1樓:戎蓓謇元魁
對任意n,a^n-b^n=(a-b)(a^(n-1)+a^(n-2)b+......+ab^(n-2)+b^(n-1)).(a,b指數之和為n-1)當n為奇數時,a^n+b^n=(a+b)(a^(n-1)-a^(n-2)b+......
-ab^(n-2)+b^(n-1)).(注意末尾以+收尾)當n為偶數時,a^n-b^n=(a+b)(a^(n-1)-a^(n-2)b+......+ab^(n-2)-b^(n-1)).
(注意以-收尾)
2樓:無情天魔精緻
factor[table[a^n + b^n, ]]
a + b,
a^2 + b^2,
(a + b) (a^2 - a b + b^2),
a^4 + b^4,
(a + b) (a^4 -a^3 b + a^2 b^2 - a b^3 + b^4),
(a^2 + b^2) (a^4 - a^2 b^2 +b^4),
(a + b) (a^6 - a^5 b + a^4 b^2 - a^3 b^3 + a^2 b^4 - a b^5 + b^6),
a^8 + b^8,
(a + b) (a^2 - a b + b^2) (a^6 - a^3 b^3 + b^6),
(a^2 + b^2) (a^8 - a^6 b^2 + a^4 b^4 - a^2 b^6 + b^8)
factor[table[a^n - b^n, ]]
a的n次方±b的n次方,怎麼進行因式分解
3樓:匿名使用者
^^^解:①n為奇數時,a^n-b^n=0由唯一解a=b,a^n-b^n只能分解為兩個因式相乘
a^n-b^n=[a^n-a^(n-1)b]+[a^(n-1)b-a^(n-2)b²]+…+[ab^(n-1)-b^n]=(a-b)[a^(n-1)+a^(n-2)b+…b^(n-1)]
a^n+b^n=a^n-(-b)^n同理即可。
②n為偶數時,a^n-b^n先使用平方差公式,指數變為奇數時,按①分解因式即可
n是4的倍數時,a^n+b^n=[a^(n/2)]²+[b^(n/2]²+2a^(n/2)b^(n/2)-2a^(n/2)b^(n/2)=[a^(n/2)+b^(n/2)]²-
[√2a^(n/4)b^(n/4)]²平方差公式分解即可。此外,a^n+b^n²實數範圍無法分解,
4樓:向秀芳虎錦
^^當n為奇數時:
a^n+b^n=(a+b)[a^(n-1)-a^(n-2)b+a^(n-3)b^2-.......+a^2b^(n-3)-ab^(n-2)+b^(n-1)]
當n為3的倍數時:令n=3m,則
a^3m+b^3m=(a^m+b^m)(a^2m-a^mb^m+b^2m]
n=5m
.........
n為2的冪時無法分解
a的n次方減b的n次方如何因式分解
5樓:匿名使用者
^^(x^n-a^n)=(x-a)(x^(n-1)+ax^(n-2)+...a^(n-1))
例如:x^2-a^2=(x-a)(x+a)
x^3-a^3=(x-a)(x^2+ax+a^2)
x^4-x^4=(x-a)(x^3+3x^2a+3xa^2+a^3)
b+...+(-1)^(r-1)a^(n-r)b^(r-1)+...+b^(n-1)]
n為大於零的奇數,r為中括號內項的序數,後面括號中各項式的冪之和都為n-1,an表示a的n次方。(n大於0且n不等於2)
解題時常用它的變形:(a+b)^3=a^3+b^3+3ab(a+b)和 a^3+b^3=(a+b)^3-3ab(a+b)=(a+b)(a^2+b^2-ab),相應的,立方差公式也有變形:a^3-b^3=(a-b)^3+3ab(a-b)=(a-b)(a^2+b^2+ab)。
擴充套件資料
因為1991可以分成996和995
所以如果
如果x+y=181,x-y=11,x=96,y=85同時也可以是負數
所以解有x=996,y=995,或x=996,y=-995,或x=-996,y=995或x=-996,y=-995
或x=96,y=85,或x=96,y=-85或x=-96,y=85或x=-96,y=-85
有時應注意加減的過程。
6樓:鈄育普微
用複數唄,設x^n=a,然後把n個根寫出來就行了。
比如x^n=1,它的根是cos(2kπ/n)+isin(2kπ/n),k取0,1……n-1,共n個值
那麼x^n=a,兩邊同時除以a,就得到根為上面那n個數每個除以根號a分之1開n次方,即答案
分解為(x-x1)(x-x2)……(x-xn),x1,x2……xn為上述的n個根
7樓:匿名使用者
^這是一個大難題。
依我的見解,做法是:
當n=2m時,a^(2m)-b^(2m)=[a^m+b^m][a^m-b^m]
當n=2m+1時,a^(2m+1)-b^(2m+1)=(a-b)[a^2m+a^(2m-1)b+a^(2m-2)b²+...+b^(2m)]
可能還是可分的,這要看n了。
a的n次方減b的n次方,公式是什麼,怎麼轉化過來的。詳細步驟
8樓:假面
就能算出:a^n-b^n=(a-b)a^(n-1)+b*(a^(n-1)-b^(n-1))
然後繼續把:a^(n-1)-b^(n-1)用同樣的方法分解下去即可
9樓:匿名使用者
這個的轉化比較複雜點,你先記住公式!
a的n次方減b的n次方公式怎麼推出來的
10樓:匿名使用者
a=b是a^n-b^n=0的一個特解抄,所以a^n-b^n因式分解肯定有一項是a-b。然後
用a^n-b^n除以a-b,就能算出a^n-b^n=(a-b)a^(n-1)+b*(a^(n-1)-b^(n-1)),然後繼續把a^(n-1)-b^(n-1)用同樣的方法分解下去就可以得到結果了。
a的n次方 b的n次方,a的n次方減去b的n次方等 a b x什麼
答 二項定理 a b n c n,0 a n c n,1 a n 1 b 1 c n,r a n r b r c n,n b n n n c n,0 表示n取0,公式叫做二項式定理,右邊項式叫做 a b n二展式,其係數cnr r 0,1,n 叫做二項係數,式cnran rbr.叫做二項展式通項,用...
a的n次方減b的n次方如何因式分解
阮初柳靖盈 用複數唄,設x n a,然後把n個根寫出來就行了。比如x n 1,它的根是cos 2k n isin 2k n k取0,1 n 1,共n個值 那麼x n a,兩邊同時除以a,就得到根為上面那n個數每個除以根號a分之1開n次方,即答案 分解為 x x1 x x2 x xn x1,x2 xn...
求證n開n次方的極限為,求證n開n次方的極限為
我是乙個麻瓜啊 證明過程如下 1 設a n 1 n 所以a e lnn n lim n a e lim n lnn n 2 而lim n lnn n屬 型,用洛必達法則,lim n lnn n lim n 1 n 0。3 lim n n 1 n e lim n lnn n e 0 1。洛必達法則是在...