線性代數中的極大無關組的求法

時間 2021-08-30 11:05:09

1樓:匿名使用者

設v是域p上的線性空間,s是v的子集。若s的一部分向量線性無關,但在這部分向量中,加上s的任一向量後都線性相關,則稱這部分向量是s的乙個極大線性無關組。v中子集的極大線性無關組不是惟一的。

例如,v的基都是v的極大線性無關組。它們所含的向量個數(基數)相同。v的子集s的極大線性無關組所含向量的個數(基數),稱為s的秩。

只含零向量的子集的秩是零。v的任一子集都與它的極大線性無關組等價。特別地,當s等於v且v是有限維線性空間時,s的秩就是v的維數。

2樓:匿名使用者

呵呵,很簡單啊。

先把那幾個向量以列向量的形式寫成乙個矩陣,然後求這個矩陣的秩,因為極大無關組中向量的個數就是矩陣的秩。要求矩陣的秩當然要先把矩陣化成行簡化階梯型矩陣啦,然後看看其中的單位陣部分對應哪幾個向量,這幾個向量便是極大無關組的成員嘍~。例子如下:

求a1=(-1,-1,0,0)t a2=(1,2,1,-2)t a3=(0,1,1,-1)t a4=(1,3,2,1)t

a5=(2,6,4,-1)t 的乙個極大線性無關組。

解:a=

-1 1 0 1 2

-1 2 1 3 6

0 1 1 2 4

0 -1 -1 1 -1

化簡得:

a=1 0 1 0 1

0 1 1 0 2

0 0 0 1 1

0 0 0 0 0

顯然r(a)=3.因此極大無關組有3個向量。

顯然第1,2,4列為單位矩陣部分,對應的向量為a1 a2 a4,因此此即為極大無關組。

線性代數 設向量組a1,a2am線性無關1 a

功寰 m必大於2,不過要討論m奇偶,當m為奇是線性無關,當m為偶數是線性相關 設 a a1 a2 am b b1 b2 bm 則 b ap,其中 p 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 p 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 p 2 0 0 1...

求下列向量組的秩和極大線性無關組

顧小蝦水瓶 根據題意的到a 1 2 0 2 0 4 4 2 0 k 2 5 4 0 2 2 3 當k 0時,r a 4極大無關組為本身,與題意不符,捨去 當k 0時,階梯形矩陣為 1 2 0 2 0 4 4 2 0 0 12 4k 12 2k 0 0 0 4 題意得a為不可逆矩陣,所以iai 0,1...

線性代數中行等價的問題,線性代數中關於行等價的問題

對矩陣a作行初等變換,相當於使a左乘1個非奇異矩陣p.b pa.記b的行向量分別為b 1 b 2 b n a的行向量分別為a 1 a 2 a n p的列向量分別為p 1 p 2 p n p p 1 p 2 p n p i,j i,j 1,2,n.則,b b 1 b 2 b n pa p a 1 a ...