1樓:吳就額
設a=(x,y),b=(x',y')。
1、向量的加法
向量的加法滿足平行四邊形法則和三角形法則。
ab+bc=ac。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的運算律:
交換律:a+b=b+a;
結合律:(a+b)+c=a+(b+c)。
2、向量的減法
如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0
ab-ac=cb. 即“共同起點,指向被減”
a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').
4、數乘向量
實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣•∣a∣。
當λ>0時,λa與a同方向;
當λ<0時,λa與a反方向;
當λ=0時,λa=0,方向任意。
當a=0時,對於任意實數λ,都有λa=0。
注:按定義知,如果λa=0,那麼λ=0或a=0。
實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。
當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;
當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。
數與向量的乘法滿足下面的運算律
結合律:(λa)•b=λ(a•b)=(a•λb)。
向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.
數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.
數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。
3、向量的的數量積
定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π
定義:兩個向量的數量積(內積、點積)是一個數量,記作a•b。若a、b不共線,則a•b=|a|•|b|•cos〈a,b〉;若a、b共線,則a•b=+-∣a∣∣b∣。
向量的數量積的座標表示:a•b=x•x'+y•y'。
向量的數量積的運算律
a•b=b•a(交換律);
(λa)•b=λ(a•b)(關於數乘法的結合律);
(a+b)•c=a•c+b•c(分配律);
向量的數量積的性質
a•a=|a|的平方。
a⊥b 〈=〉a•b=0。
|a•b|≤|a|•|b|。
向量的數量積與實數運算的主要不同點
1、向量的數量積不滿足結合律,即:(a•b)•c≠a•(b•c);例如:(a•b)^2≠a^2•b^2。
2、向量的數量積不滿足消去律,即:由 a•b=a•c (a≠0),推不出 b=c。
3、|a•b|≠|a|•|b|
4、由 |a|=|b| ,推不出 a=b或a=-b。
4、向量的向量積
定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:
∣a×b∣=|a|•|b|•sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。
向量的向量積性質:
∣a×b∣是以a和b為邊的平行四邊形面積。
a×a=0。
a‖b〈=〉a×b=0。
向量的向量積運算律
a×b=-b×a;
(λa)×b=λ(a×b)=a×(λb);
(a+b)×c=a×c+b×c.
注:向量沒有除法,“向量ab/向量cd”是沒有意義的。
向量的三角形不等式
1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;
① 當且僅當a、b反向時,左邊取等號;
② 當且僅當a、b同向時,右邊取等號。
2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。
① 當且僅當a、b同向時,左邊取等號;
② 當且僅當a、b反向時,右邊取等號。
定比分點
定比分點公式(向量p1p=λ•向量pp2)
設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在一個實數 λ,使 向量p1p=λ•向量pp2,λ叫做點p分有向線段p1p2所成的比。
若p1(x1,y1),p2(x2,y2),p(x,y),則有
op=(op1+λop2)(1+λ);(定比分點向量公式)
x=(x1+λx2)/(1+λ),
y=(y1+λy2)/(1+λ)。(定比分點座標公式)
我們把上面的式子叫做有向線段p1p2的定比分點公式
三點共線定理
若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線
三角形重心判斷式
在△abc中,若ga +gb +gc=o,則g為△abc的重心
[編輯本段]向量共線的重要條件
若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。
a//b的重要條件是 xy'-x'y=0。
零向量0平行於任何向量。
[編輯本段]向量垂直的充要條件
a⊥b的充要條件是 a•b=0。
a⊥b的充要條件是 xx'+yy'=0。
零向量0垂直於任何向量. 不知你要的是不是這些?
不知道可不可以解你的問題
2樓:匿名使用者
畫條線斷,左端寫a右端寫c在中間隨便取一點b,你再看看,應該會懂得
3樓:匿名使用者
-ab等價於+ba,
所以總體等價於ba+ac,所以等於bc
另,數學背口訣之類的是下下策,理解、推導才是上策
數學問題
4樓:m我們的人的人
能放進儲藏室。
設abcd是矩形,則ab∥cd,ab=cd=1m,oa=1.2m,作oe⊥ab,則oe平分ab。
∴ae=1m
∴oe²=oa²-ae²=1.2²-0.5²=1.19,∵0.8²=0.64。1.19>0.64
∴長,寬,高分別是1.2m,1m,0.8m的箱子能放進儲藏室。
簡單的數學問題,簡單數學問題?
設買船的人數為p,所有人都參加時支付的錢為m,要花的錢為y pm則當10個人不參加時,要花的錢為y p 10 m 1 當15個人退出時,則y p 15 m 2 所以 p 10 m 1 p 15 m 2 pm則 p 10 m 1 pm p 10m 10 0 p 15 m 2 pm 2p 15m 30 ...
很簡單的數學問題,一個很簡單的數學問題
解 1 設他們出發x小時後兩車相遇 依據題意有 95 85 x 36 x 36 180 0.2 小時 答,他們出發後經過0.2小時相遇.2 設 經過t小時,兩車相距6公里,有兩種情況,第一種情況兩車相遇前相距6公里此時有 95 85 t 36 6 解得t 1 6 小時 第二種情況,兩車相遇後相距6公...
很簡單的數學問題,一個很簡單的數學問題
嚀蒙建造 這個問題必須用那種帶有x,y的式子證明,首先列出雙曲線的式子,在上面找任意一點,座標用x,y表示出來,然後你根據式子專門求一下這點到兩焦點的距離,得出的結果就等於兩焦點之間的距離,這樣就可以證明。當然,你在證明的時候一定要指明各個字母代表的含義,比如你問題中的a表示的是什麼意思,是誰的係數...