1樓:百度文庫精選
內容來自使用者:aa2011bbhaha
線性代數總結[轉貼2008-05-04 13:04:49] 字型大小:大中小
線性代數總結
一、課程特點
特點一:知識點比較細碎。
如矩陣部分涉及到了各種型別的性質和關係,記憶量大而且容易混淆的地方較多。
特點二:知識點間的聯絡性很強。
這種聯絡不僅僅是指在後面幾章中用到前兩章行列式和矩陣的相關知識,更重要的是在於不同章節中各種性質、定理、判定法則之間有著相互推導和前後印證的關係。
複習線代時,要做到「融會貫通」。
「融會」——設法找到不同知識點之間的內在相通之處;
「貫通」——掌握前後知識點之間的順承關係。
二、行列式與矩陣
第一章《行列式》、第二章《矩陣》是線性代數中的基礎章節,有必要熟練掌握。
行列式的核心內容是求行列式,包括具體行列式的計算和抽象行列式的計算,其中具體行列式的計算又有低階和階兩種型別;主要方法是應用行列式的性質及按行\列定理化為上下三角行列式求解。
對於抽象行列式的求值,考點不在求行列式,而在於、、等的相關性質,及性質(其中為矩陣的特徵值)。
矩陣部分出題很靈活,頻繁出現的知識點包括矩陣運算的運算規律、、、的性質、矩陣可逆的判定及求逆、矩陣的秩的性質、初等矩陣的性質等。,性質若矩陣概念多、定理多、符號多、運算規律多、內容相互縱橫交錯,知識前後緊密聯絡是線性代數課程的特點,故考生應充分理解概念,掌握定理的條件、結論、應
線性代數的主要內容有哪些?
2樓:上賊船莫怕死
線性代數(linear algebra)是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。向量空間是現代數學的乙個重要課題;因而,線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。
由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
總的來說線性代數分為6個部分:行列式,矩陣,向量,線性方程組,矩陣的特徵值和特徵向量,二次型。線性代數整體感很強,每一章之間聯絡緊密,相互交織的考點很多,很容易就可以出線代的綜合題,但是線代又相對高數和概率論最簡單的,因為概念雖然多,但是並不難,所以很容易就能學的好,運用好,對於學習方法的話,主要以對於概念的理解要到位,尤其對秩的概念與運用,線性方程求解和特徵向量特徵矩陣這三個方面重點關注
3樓:匿名使用者
一、行列式考試內容 行列式的概念和基本性質 行列式按行(列)定理考試要求1.了解行列式的概念,掌握行列式的性質.2.會應用行列式的性質和行列式按行(列)定理計算行列式.
二、矩陣考試內容 矩陣的概念 矩陣的線性運算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉置 逆矩陣的概念和性質 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運算考試要求 1.理解矩陣的概念,了解單位矩陣、數量矩陣、對角矩陣、三角矩陣、對稱矩陣和反對稱矩陣,以及它們的性質.2.掌握矩陣的線性運算、乘法、轉置以及它們的運算規律,了解方陣的冪與方陣乘積的行列式的性質.3.理解逆矩陣的概念,掌握逆矩陣的性質,以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4.理解矩陣初等變換的概念,了解初等矩陣的性質和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法.5.了解分塊矩陣及其運算.
三、向量考試內容 向量的概念向量的線性組合與線性表示 向量組的線性相關與線性無關 向量組的極大線性無關組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關係 向量空間及其相關概念 維向量空間的基變換和座標變換 過渡矩陣 向量的內積 線性無關向量組的正交規範化方法 規範正交基 正交矩陣及其性質考試要求 1.理解 維向量、向量的線性組合與線性表示的概念. 2.理解向量組線性相關、線性無關的概念,掌握向量組線性相關、線性無關的有關性質及判別法. 3.理解向量組的極大線性無關組和向量組的秩的概念,會求向量組的極大線性無關組及秩4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關係. 5.了解 維向量空間、子空間、基底、維數、座標等概念. 6.了解基變換和座標變換公式,會求過渡矩陣. 7.了解內積的概念,掌握線性無關向量組正交規範化的施密特(schmidt)方法.8.了解規範正交基、正交矩陣的概念以及它們的性質.
四、線性方程組考試內容:線性方程組的克萊姆(cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質和解的結構齊次線性方程組的基礎解系和通解 解空間 非齊次線性方程組的通解考試要求l.會用克萊姆法則.2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件.3.理解齊次線性方程組的基礎解系、通解及解空間的概念,掌握齊次線性方程組的基礎解系和通解的求法.4.理解非齊次線性方程組解的結構及通解的概念.5.掌握用初等行變換求解線性方程組的方法.
五、矩陣的特徵值和特徵向量 考試內容: 矩陣的特徵值和特徵向量的概念、性質 相似變換、相似矩陣的概念及性質 矩陣可相似對角化的充分必要條件及相似對角矩陣實對稱矩陣的特徵值、特徵向量及其相似對角矩陣考試要求:1.理解矩陣的特徵值和特徵向量的概念及性質,會求矩陣的特徵值和特徵向量.
2.理解相似矩陣的概念、性質及矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法.3.掌握實對稱矩陣的特徵值和特徵向量的性質.
六、二次型考試內容 二次型及其矩陣表示 合同變換與合同矩陣二次型的秩 慣性定理 二次型的標準形和規範形 用正交變換和配方法化二次型為標準形 二次型及其矩陣的正定性考試要求1.掌握二次型及其矩陣表示,了解二次型秩的概念,了解合同變換與合同矩陣的概念,了解二次型的標準形、規範形的概念以及慣性定理.2.掌握用正交變換化二次型為標準形的方法,會用配方法化二次型為標準形.3.理解正定二次型、正定矩陣的概念,並掌握其判別法.
4樓:匿名使用者
基礎內容:行列式、矩陣、向量較難內容:線性方程組、矩陣的特徵值和特徵向量、二次型
大學線性代數都學習哪些內容?
5樓:飛雪射鹿笑倚鴛
線性代數是數學的乙個分支,它的研究物件是向量,向量空間(或稱線性空間),線性變換和有限維的線性方程組。
線性代數被廣泛地應用於抽象代數和泛函分析中;通過解析幾何,線性代數得以被具體表示。線性代數的理論已被泛化為運算元理論。由於科學研究中的非線性模型通常可以被近似為線性模型,使得線性代數被廣泛地應用於自然科學和社會科學中。
大學線性代數主要學習如下內容:行列式、矩陣、線性方程組、向量空間與線性變換、特徵值和特徵向量、矩陣的對角化,二次型及應用問題等內容。
6樓:百度使用者
總的來說分為6個部分 行列式,矩陣,向量,線性方程組,矩陣的特徵值和特徵向量,二次型 線性代數整體感很強,每一章之間聯絡緊密,相互交織的考點很多,很容易就可以出線代的綜合題,但是線代又相對高數和概率論最簡單的,因為他的概念雖然多,但是並不難,所以學的人很容易就能學的好,運用好,對於學習方法的話,我認為還是主要以對於概念的理解要到位,尤其對秩的概念與運用,線性方程求解和特徵向量特徵矩陣這三個方面重點關注,因為這三個考點很容易和相似,合同和二次型一起出大題,所以要注意。 總的來說線代還是不難的,希望我的答案對你有幫助!
線性代數求A逆,求A的逆 線性代數
答案是錯的 正確答案是 1 1 2 0 1 1 0 0 1 a,e 1 1 1 1 0 0 0 1 1 0 1 0 0 0 1 0 0 1 行初等變換為 1 1 0 1 0 1 0 1 0 0 1 1 0 0 1 0 0 1 行初等變換為 1 0 0 1 1 2 0 1 0 0 1 1 0 0 1 ...
線性代數,劃紅線部分怎麼得到的,請問線性代數這題劃紅線的這一步如何理解?特別是紫色高亮部分
依次執行如下的矩陣化簡 第1行乘以 1加到第3行,第1行乘以 2加到第2行 第2行乘以 1加到第3行 第 1 行的 2 倍,1倍分別加到 第 2 3 行,初等行變換為 1 2 2 1 0 3 6 4 0 3 6 4 第 2 行的 1倍加到 第 3 行,初等行變換為 1 2 2 1 0 3 6 4 0...
線性代數的通解,線性代數。,這裡的通解是怎麼計算出來的??求解釋??
1.已知 1,0,1,0 t 是ax 0的基礎解系所以 ax 0含有乙個線性無關的解向量因為a是4階矩陣,r a 3 4 1所以 r a 1.r a 和r a 2.因為 r a 3 所以 a a a e 0所以 a的列向量都是 a x 0 的解.又 r a 1,所以 a x 0 的基礎解系含 4 r...