1樓:來自茅仙洞性格豪爽的黃月英
解(1)設 y=a(x-1)(x-3)
代入(0,-3)
3a=-3
a=-1
y=-(x^2-4x+3)
= -x^2+4x-3
頂點(2,1)
(2) 對稱軸為直線x=2
在y=-x中, 當x=2時,y=-2
所以對應的函式關係式為y=-(x-2)^2-2y=-x^2+4x-3=-(x^2-2x+4-4)-3=-(x-2)^2+1
向下平移三個單位
已知:如圖,拋物線y=ax2+bx+c與x軸相交於兩點a(1,0),b(3,0)與y軸相交於點c(0,3),(l)求拋物
如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於點a(-1,0),b(3,0)兩點,與y軸交於點c(0,-3).(1)求
2樓:夜小柒
(1)設拋物線解析式為y=a(x+1)(x-3),
∵s△bcm=s梯形ocmd+s△bmd-s△boc=12
?(3+4)?1+1
2?2-4-1
2?3?3=72
+82-92
=3s△abc=1
2?ab?oc=1
2∵四邊形acpq為平行四邊形,
∴qp平行且相等ac,
∴△pfq≌△aoc,
∴fq=oc=3,
∴3=x2-2x-3,
解得 x=1+
7或x=1-7,
∴q(1+
7,3)或(1-
7,3).
綜上所述,q點為(2,-3)或(1+
已讚過
已踩過
<你對這個回答的評價是?
收起erchuhchgyj
2018-03-23
知道答主
回答量:
採納率:40%
幫助的人:2.1萬
我也去答題
訪問個人頁
關注【題目】
如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。
(1)求拋物線的解析式和對稱軸;
(2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)設四邊形deco的面積為s,求s關於t的函式表示式。
【解析】
(1)把a(-4,0),b(1,0),點c(0,2)即可得到結論;
(2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12
x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論;
(3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論.
【解答】
(1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得,
16a-4b+c=0
a+b+c=0
c=2,
∴a=-12
b=-3
2c=2
,∴拋物線的解析式為:y=-12
x2-3
2bx+2,
對稱軸為:直線x=-32
;(2)存在,
∵ad=2t,
∴df=ad=2t,
∴of=4-4t,
∴d(2t-4,0),
∵直線ac的解析式為:y=12
x+2,
∴e(2t-4,t),
∵△efc為直角三角形,
①當∠efc=90°,則△def∽△ofc,∴de
of=dfoc,即t
4-4t=2t
2,解得:t=34
,②當∠fec=90°,
∴∠aef=90°,
∴△aef是等腰直角三角形,
∴de=12
af,即t=2t,
∴t=0,(捨去),
③當∠acf=90°,
則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2,
解得:t=54
,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34
或54;
(3)∵b(1,0),c(0,2),
∴直線bc的解析式為:y=-2x+2,
當d在y軸的左側時,s=12
(de+oc)•od=12
(t+2)•(4-2t)=-t2+4 (0
已讚過
已踩過
<你對這個回答的評價是?
收起收起
1條摺疊回答
2019-05-16
如圖,拋物線y=ax2+bx+3與x軸交於a(-1,0)和b...
2015-02-04
如圖,在直角座標系中,拋物線y=ax 2 +bx+c(a≠0...
2018-08-24
如圖,已知拋物線y=ax^2+bx+c(a≠0)與x軸交於a...
2015-02-04
如圖,已知拋物線y=ax 2 + bx +3(a≠0)與x軸...
2019-10-26
如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於a、b兩...
2015-02-10
已知,如圖,拋物線y=ax2+bx+c(a≠0)與x軸交於點...
2014-09-03
如圖,對稱軸為直線x=-1的拋物線y=ax^2+bx+c(a...
更多類似問題>
特別推薦
誰是 20 世紀最聰明的人?
為何說gps不只是導航?
少林寺是怎麼和中國功夫繫結的?
愛因斯坦有著怎樣的童年?
換一換
幫助更多人
×個人、企業類侵權投訴
違法有害資訊,請在下方選擇後提交
類別垃圾廣告
低質灌水
色情、暴力
政治敏感
我們會通過訊息、郵箱等方式盡快將舉報結果通知您。
說明/200
提交取消
領取獎勵
我的財富值
0兌換商品
--去登入
我的現金0提現
我知道了
--去登入
做任務開寶箱
累計完成
0個任務
10任務
略略略略…
50任務
略略略略…
100任務
略略略略…
200任務
略略略略…
任務列表載入中...
新手幫助
如何答題
獲取採納
使用財富值
玩法介紹
知道**
知道團隊
合夥人認證
高質量問答
您的帳號狀態正常
投訴建議
意見反饋
非法資訊舉報
【題目】
如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。
(1)求拋物線的解析式和對稱軸;
(2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由;
(3)設四邊形deco的面積為s,求s關於t的函式表示式。
【解析】
(1)把a(-4,0),b(1,0),點c(0,2)即可得到結論;
(2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12
x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論;
(3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論.
【解答】
(1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得,
16a-4b+c=0
a+b+c=0
c=2,
∴a=-12
b=-3
2c=2
,∴拋物線的解析式為:y=-12
x2-3
2bx+2,
對稱軸為:直線x=-32
;(2)存在,
∵ad=2t,
∴df=ad=2t,
∴of=4-4t,
∴d(2t-4,0),
∵直線ac的解析式為:y=12
x+2,
∴e(2t-4,t),
∵△efc為直角三角形,
①當∠efc=90°,則△def∽△ofc,∴de
of=dfoc,即t
4-4t=2t
2,解得:t=34
,②當∠fec=90°,
∴∠aef=90°,
∴△aef是等腰直角三角形,
∴de=12
af,即t=2t,
∴t=0,(捨去),
③當∠acf=90°,
則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2,
解得:t=54
,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34
或54;
(3)∵b(1,0),c(0,2),
∴直線bc的解析式為:y=-2x+2,
當d在y軸的左側時,s=12
(de+oc)•od=12
(t+2)•(4-2t)=-t2+4 (0 當d在y軸的右側時,如圖2, ∵od=4t-4,de=-8t+10,s=1 2(de+oc)•od=12 (-8t+10+2)•(4t-4)=-16t2+40t-24 (2 3樓:匿名使用者 【題目】 如圖,拋物線y=ax2+bx+c與x軸交於兩點a(−4,0)和b(1,0),與y軸交於點c(0,2),動點d沿△abc的邊ab以每秒2個單位長度的速度由起點a向終點b運動,過點d作x軸的垂線,交△abc的另一邊於點e,將△ade沿de摺疊,使點a落在點f處,設點d的運動時間為t秒。 (1)求拋物線的解析式和對稱軸; (2)是否存在某一時刻t,使得△efc為直角三角形?若存在,求出t的值;若不存在,請說明理由; (3)設四邊形deco的面積為s,求s關於t的函式表示式。 【解析】 (1)把a(-4,0),b(1,0),點c(0,2)即可得到結論; (2)由題意得ad=2t,df=ad=2t,of=4-4t,由於直線ac的解析式為:y=12 x+2,得到e(2t-4,t),①當∠efc=90°,則△def∽△ofc,根據相似三角形的性質得到結論;②當∠fec=90°,根據等腰直角三角形的性質得到結論;③當∠acf=90°,根據勾股定理得到結論; (3)求得直線bc的解析式為:y=-2x+2,當d在y軸的左側時,當d在y軸的右側時,如圖2,根據梯形的面積公式即可得到結論. 【解答】 (1)把a(-4,0),b(1,0),點c(0,2)代入y=ax2+bx+c得, 16a-4b+c=0 a+b+c=0 c=2, ∴a=-12 b=-3 2c=2 ,∴拋物線的解析式為:y=-12 x2-3 2bx+2, 對稱軸為:直線x=-32 ;(2)存在, ∵ad=2t, ∴df=ad=2t, ∴of=4-4t, ∴d(2t-4,0), ∵直線ac的解析式為:y=12 x+2, ∴e(2t-4,t), ∵△efc為直角三角形, ①當∠efc=90°,則△def∽△ofc,∴de of=dfoc,即t 4-4t=2t 2,解得:t=34 ,②當∠fec=90°, ∴∠aef=90°, ∴△aef是等腰直角三角形, ∴de=12 af,即t=2t, ∴t=0,(捨去), ③當∠acf=90°, 則ac2+cf2=af2,即(42+22)+[22+(4t-4)2]=(4t)2, 解得:t=54 ,∴存在某一時刻t,使得△efc為直角三角形,此時,t=34 或54; (3)∵b(1,0),c(0,2), ∴直線bc的解析式為:y=-2x+2, 當d在y軸的左側時,s=12 (de+oc)•od=12 (t+2)•(4-2t)=-t2+4 (0 當d在y軸的右側時,如圖2, ∵od=4t-4,de=-8t+10,s=1 2(de+oc)•od=12 (-8t+10+2)•(4t-4)=-16t2+40t-24 (2 無知勝惑 學過向量嗎?c 0,3 p 1,4 a 3,0 設m n,m 向量am 向量pc,n 0 1 3 2,m 3 4 0 1,m 2,1 向量am 向量cp,n 1 0 3 4,m 4 3 0 1,m 4,1 向量cm 向量ap,n 1 3 0 2,m 4 0 3 7,m 2,7 向量cm 向... 風中的紙屑 參 童鞋,你覺得題目資訊完整嗎?應該a b座標至少要知道一個吧。由函式與y軸交於c 0,3 得 c 0 於是 y ax 2 bx 因對稱軸是x 2 b 2a 即b 4a所以 拋物線解析式是y ax 2 4ax要求函式解析式,3個未知數必須有3個方程,本題條件只有2個,故無法求出具體函式式... 原式為y a x b 2a 2 b 2 4a c 可視為y ax 2這個函式向上平移 b 2 4a c 個單位長度,向左平移了 b 2a 個單位長度。又因為y ax 2這個函式的焦點為 0,1 4a 準線為y 1 4a 則y ax2 bx c的焦點為 b 2a,1 4a b 2 4a c 準線為y ...如圖1,已知拋物線y ax2 bx c經過A(3,0) B(1,0) C(0,3)三點
已知拋物線y ax 2 bx c與x軸交於A,B,與y軸交於點C 0,3 ,對稱軸為直線x 2 1 求拋物線的函式表示式
拋物線y ax2 bx c的焦點及準線