1樓:蹦迪小王子啊
-x/2+1/2。
k=limx->0
f(1-2x)/-2x=limx->0[f(1-2x)/x]/-2=1/-2=-1/2。
線在點(1,0)處的切線方程為 y=-1(x-1)/2=-x/2+1/2。
幾何定義
p和q是曲線c上鄰近的兩點,p是定點,當q點沿著曲線c無限地接近p點時,割線pq的極限位置pt叫做曲線c在點p的切線,p點叫做切點;經過切點p並且垂直於切線pt的直線pn叫做曲線c在點p的法線(無限逼近的思想)。
說明:平面幾何中,將和圓只有一個公共交點的直線叫做圓的切線.這種定義不適用於一般的曲線;pt是曲線c在點p的切線,但它和曲線c還有另外一個交點;相反,直線l儘管和曲線c只有一個交點,但它卻不是曲線c的切線。
2樓:碧霞緣君明
k=limx->0f(1-2x)/-2x=limx->0[f(1-2x)/x]/-2=1/-2=-1/2
線在點(1,0)處的切線方程為 y=-1(x-1)/2=-x/2+1/2
設函式fx=a㏑x+x+1/x-1,其中a為常數,若a=0,求曲線y=fx在點1,f1處的切線方
3樓:滿意請採納喲
當a=0時,
f(x)=x+1/x-1
f(1)=1+1-1=1
f'(x)=1-1/x²
f'(1)=1-1=0
因此在x=1處的bai切線方程為y=1。du幾何上,切線指zhi的是一條剛好觸dao碰到曲線上某一版點的直線。更準確權地說,當切線經過曲線上的某點(即切點)時,切線的方向與曲線上該點的方向是相同的,此時,“切線在切點附近的部分”最接近“曲線在切點附近的部分”。
4樓:
a=0,
f(x)=x+1/x-1
f(1)=1+1-1=1
f'(x)=1-1/x²
f'(1)=1-1=0
因此在x=1處的切線方程為y=1
已知曲線經過點(0,-5),並且曲線上(x,y)處切線斜率為1-x,求此曲線方程?
5樓:會昌一中的學生
^f(x)的導數也就是斜率已知,那麼f(x)=(1/3)x^3-x^2+c,又因為過點(0,1)則f(x)=(1/3)x^3-x^2+1。
在直角座標系中,如果某曲線c上的點與一個二元方程f(x,y)=0的實數解建立了如下的關係:(1)曲線上點的座標都是這個方程的解;(2)以這個方程的解為座標的點都是曲線上的點。那麼,這個方程叫做曲線的方程。
在直角座標系中,如果某曲線c(看作點的集合或適合某種條件的點的軌跡)上的點與一個二元方程f(x,y)=0的實數解建立了如下的關係:
(1)曲線上點的座標都是這個方程的解;
(2)以這個方程的解為座標的點都是曲線上的點。
那麼,這個方程叫做曲線的方程,這條曲線叫做方程的曲線 。
6樓:匿名使用者
設曲線方程為y=f(x),根據題意得f'(x)=1-x∵∫f'(x)dx=f(x)+c
於是∫(1-x)dx=x-x²/2+c
把(0,-5)代入上式得c=-5
∴曲線方程為y=-x²/2+x-5
已知函式y f x 滿足 f 1 x f 1 x ,且當x1時,f x x2 4x 3,則當x1時,f xx2是x的平方的意思
因為x 1時f x x2 4x 3所以f x 1 x 1 2 4 x 1 3 f 1 x x 1 2 1 因為x 1,所以1 x 1 所以 x 1 時 f x x2 1 梨馥 函式y f x 滿足 f 1 x f 1 x 所以函式y f x 關於x 1對稱 當x 1時f x x2 4x 3 x 1 ...
已知直線L1為曲線y x 2 x 2在點(1,0)處的切線
食草控 1 y的導數 f x 的導數 2x 1 所以f 1 的導數 3 k1 因為l1的切點為 1,0 所以l1 y 3 x 1 即3x y 3 0因為l1垂直於l2 所以k1 k2 1 得k2 1 3 設l2的切點為 x0,y0 所以f x0 的導數 2x0 1 1 3得x0 2 3 又因為點 x...
已知直線L1為曲線Y X2 X 2在點 1 0 處的切線
1 y的導數 f x 的導數 2x 1 所以f 1 的導數 3 k1 因為l1的切點為 1,0 所以l1 y 3 x 1 即3x y 3 0因為l1垂直於l2 所以k1 k2 1 得k2 1 3 設l2的切點為 x0,y0 所以f x0 的導數 2x0 1 1 3得x0 2 3 又因為點 x0,y0...