已知函式f x 2sin x3) 1,若函式y f

時間 2021-09-11 22:24:16

1樓:頁頁辦公技巧大全

f(kx)=2sin(kx-π/3)+1首先週期t=2π/3 因為 t=2π/k=2π/3所以 k=3 因為x∈[0,π/3] 所以 kx∈[0,π]

記kx=n 故f(n)=2sin(n-π/3)+1 記u=n-π/3∈[-π/3,2π/3] 有兩個不同解就是y=m與之有兩個交點 根據函式影象可知 m∈[根號3+1,3]

2樓:匿名使用者

函式y=f(kx)=2sin(kx-π/3)+1的週期:t=2π/k=2π/3,(k>0)

所以k=3。

方程f(3x)=2sin(3x-π/3)+1=m,恰有兩個不同的解,即方程 sin(3x-π/3)=(m-1)/2,恰有兩個不同的解,即函式y=sin(3x-π/3),與函式y=(m-1)/2,恰有兩個不同的交點。

因為 x∈[0,π/3],

3x-π/3∈[-π/3,2π/3],

由函式y=sin(3x-π/3)的圖象可知:

x∈[2π/9,5π/18)u(5π/18,π/3]時,y∈[√3/2,1),

與函式y=(m-1)/2,可能恰有兩個不同的交點。

所以 √3/2<=(m-1)/2<1,

√3+1<=m<3。

故所求實數m的取值範圍為:[√3+1,3)。

函式f x 2 sinX 1 X 2是有界函式 周期函式 奇函式 偶函式

明哥歸來 有界函式 說明一下,無法弄清楚樓主的題目到底是什麼 故對題目進行分類討論 若f x 2 sinx 1 x 2 sinx 0,1 x 0 sinx 1,x 0.故 2 sinx 1 x 2 1 1 0 3 x 1 x f x 0故0 證明函式f x x2 1 x4 1 在定義域r內有界 11...

已知函式f x 2sinx 2(1)求函式最小正週期及最值要三角恒等變換的詳細過程

f x 2sin x 4 cos x 4 3cos x 2 sin x 2 3cos x 2 2cos 3 sin x 2 2sin 3 cos x 2 2sin x 2 3 1 最小正週期 4 最大值 2,最小值 2. 解 f x 2sin x 4 cos x 4 3cos x 2 sin x 2...

已知函式f x 2根號3cos 2x 2sinxcosx 根號3求函式的最小正週期和最小值,要詳細過程

f x 2 3cos x sin2x 3 3 2cos x 1 sin2x 3cos2x sin2x 2 cos2xsin 3 sin2xcos 3 2sin 3 2x 所以函式的最小正週期k 2 2 最小值 2 買昭懿 f x 2 3cos 2x 2sinxcosx 3 3 cos2x 1 sin...