1樓:匿名使用者
∫√(16-x^2)dx
=x√(16-x^2)+∫x^2/√(16-x^2)*dx=x√(16-x^2)-∫√(16-x^2)dx+16∫dx/√(16-x^2),
所以∫√(16-x^2)dx
=(x/2)√(16-x^2)+8arcsin(x/4)+c.
2樓:匿名使用者
letx=4sinu
dx=4cosu du
∫√(16-x^2) dx
=16∫ (cosu)^2 du
=8∫ (1+cos2u) du
=8[u +(1/2)sin2u] +c
=8u +4sin2u+ c
=8arcsin(x/4) + 8(x/4)[√(16-x^2)/4] +c
=8arcsin(x/4) + (1/2)x√(16-x^2) +c
計算定積分∫(4,-4)根號16-x^2 dx
3樓:
∫(4,-4)√(16-x^2)
令y=√(16-x^2) -> y^2=16-x^2 -> x^2+y^2=16 (y>=0)
則定積分表示以(0,0)為圓心,半徑為r=4的半圓的面積∫(4,-4)√(16-x^2)=1/2*(πr^2)=1/2*(16π)=8π
4樓:匿名使用者
這個表示一個半圓的面積
半徑是4
面積為8π
根號下 x 2 p 2 dx求積分
你愛我媽呀 令x ptanz,dx psec zdz 原式 psecz psec zdz p seczdtanz p secztanz p tanzdsecz p secztanz p tanz secztanz dz p secztpnz p sec z dz p seczdz 2 sec zdz...
微積分求解 根號下 4 x 2dx謝謝
令x 2siny,則y在0到pi 2之間 根號下 4 x 2 dx 0,2 根號下 4 4sin 2y d 2siny 0,pi 2 4cosyd siny 0,pi 2 4cos 2ydy 0,pi 2 2 1 cos 2y dy 0,pi 2 2 1 cos 2y dy 0,pi 2 2y 0,...
3x 2x 3 dx,求積分, 根號 3x 2 x 3 dx,求積分
2 3x x 3 dx 11 2 3x x 3 2 3x x 3 3 11 3 6 ln 2 3x x 3 2 6 9x x 3 3 2 3x x 3 3 c。c為常數。解答過程如下 令 2 3x x 3 t,則x 3t 2 t 3 2 3x x 3 dx td 3t 2 t 3 3t 2 t t ...