1樓:匿名使用者
•兩角和與差的三角函式
cos(α+β)=cosα•cosβ-sinα•sinβ
cos(α-β)=cosα•cosβ+sinα•sinβ
sin(α±β)=sinα•cosβ±cosα•sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
•和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
•積化和差公式:
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
•倍角公式:
sin(2α)=2sinα•cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα•cscα
•三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα•sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα•cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
•n倍角公式:
sin(nα)=ncos^(n-1)α•sinα-c(n,3)cos^(n-3)α•sin^3α+c(n,5)cos^(n-5)α•sin^5α-…
cos(nα)=cos^nα-c(n,2)cos^(n-2)α•sin^2α+c(n,4)cos^(n-4)α•sin^4α-…
•半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
•輔助角公式:
asinα+bcosα=√(a^2+b^2)sin(α+φ)(tanφ=b/a)
asinα+bcosα=√(a^2+b^2)cos(α-φ)(tanφ=a/b)
•萬能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
•降冪公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1+cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1+cos(2α))
•三角和的三角函式:
sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ
cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)
•其它公式
•兩角和與差的三角函式
cos(α+β)=cosα•cosβ-sinα•sinβ
cos(α-β)=cosα•cosβ+sinα•sinβ
sin(α±β)=sinα•cosβ±cosα•sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα•tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα•tanβ)
•和差化積公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
•積化和差公式:
sinα•cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα•sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα•cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα•sinβ=-(1/2)[cos(α+β)-cos(α-β)]
•倍角公式:
sin(2α)=2sinα•cosα=2/(tanα+cotα)
cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2
tan(2α)=2tanα/(1-tan^2α)
cot(2α)=(cot^2α-1)/(2cotα)
sec(2α)=sec^2α/(1-tan^2α)
csc(2α)=1/2*secα•cscα
•三倍角公式:
sin(3α) = 3sinα-4sin^3α = 4sinα•sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3α-3cosα = 4cosα•cos(60°+α)cos(60°-α)
tan(3α) = (3tanα-tan^3α)/(1-3tan^2α) = tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3α-3cotα)/(3cot^2α-1)
•n倍角公式:
sin(nα)=ncos^(n-1)α•sinα-c(n,3)cos^(n-3)α•sin^3α+c(n,5)cos^(n-5)α•sin^5α-…
cos(nα)=cos^nα-c(n,2)cos^(n-2)α•sin^2α+c(n,4)cos^(n-4)α•sin^4α-…
•半形公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
•輔助角公式:
asinα+bcosα=√(a^2+b^2)sin(α+φ)(tanφ=b/a)
asinα+bcosα=√(a^2+b^2)cos(α-φ)(tanφ=a/b)
•萬能公式
sin(a)= (2tan(a/2))/(1+tan^2(a/2))
cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2))
tan(a)= (2tan(a/2))/(1-tan^2(a/2))
•降冪公式
sin^2α=(1-cos(2α))/2=versin(2α)/2
cos^2α=(1+cos(2α))/2=covers(2α)/2
tan^2α=(1-cos(2α))/(1+cos(2α))
•三角和的三角函式:
sin(α+β+γ)=sinα•cosβ•cosγ+cosα•sinβ•cosγ+cosα•cosβ•sinγ-sinα•sinβ•sinγ
cos(α+β+γ)=cosα•cosβ•cosγ-cosα•sinβ•sinγ-sinα•cosβ•sinγ-sinα•sinβ•cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα•tanβ•tanγ)/(1-tanα•tanβ-tanβ•tanγ-tanγ•tanα)
•其它公式
1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a) sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
•推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=[sin(α/2)+cos(α/2)]^2
1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2
csc(a)=1/sin(a) sec(a)=1/cos(a)
cos30=sin60
sin30=cos60
•推導公式
tanα+cotα=2/sin2α
tanα-cotα=-2cot2α
1+cos2α=2cos^2α
1-cos2α=2sin^2α
1+sinα=[sin(α/2)+cos(α/2)]^2
高中數學中三角函式問題,高中數學 三角函式問題
奇變偶不變,符號看象限 是一句cos和sin變號的口訣,具體是這樣的 sin 3 2 cos 而sin 2 cos 奇變偶不變 是說當 後面加上的數為 2的奇數倍時,要變名 就是如果原來是sin就要變成cos 反之,是 2的偶數倍時,則不用變名。符號看象限 是說求sin 3 2 把 看作乙個第一象限...
高中數學三角函式怎麼學,高中數學三角函式是課本必修幾
我是蘇提 三角函式那的公式比較多 一定要背熟 至於你現在才高一,做題不順手是很正常的,畢竟才剛學嘛。這章的題 簡單的說 就是熟能生巧 會化簡 會求單調性 週期 就可以了 高考的時候 三角函式題 基本上就是和向量結合 化簡 求週期 求函式單調性 求角度 求三角形面積 放心好了,三角函式這的題和智商一點...
高中數學三角函式 萬能公式,高中數學上三角函式的萬能公式是不是真萬能啊
萬能公式 1 sin 2 cos 2 1 2 1 tan 2 sec 2 3 1 cot 2 csc 2 證明下面兩式,只需將一式,左右同除 sin 2,第二個除 cos 2即可 4 對於任意非直角三角形,總有 tana tanb tanc tanatanbtanc 證 a b c tan a b ...