求函式f(x,y)x 2y xy在區域D x y 4 y 0上的最大值和最小值

時間 2021-08-31 05:53:41

1樓:鬆雪用珍

d:x^2+y^2<=4,y>=0

在平面直角座標系表示的區域,在x軸上方的半圓,r<=2設x=2cosa,y=2sina,0<=a<=180f(x,y)

=4*(sin^2a+cos^2a)+4sin^2a(1-4cos^2a)

=4+2-2cos2a-4(1-cos^22a)=4cos^2(2a)-2cos2a+2

=(2cos2a-1/2)^2+7/4

2cos2a=1/2,a=arccos(1/4)/2f(x,y)min=7/4

2cos2a=-2,a=90

f(x,y)max=(-1*2-1/2)^2+7/4=8所以:f(x,y)min=7/4

f(x,y)max=8

2樓:宇文學岺蕢婷

由f(x,y)=xy-x-2y,得

?f?x

=y?1,

?f?y

=x?2,令?f

?x=?f?y

=0,解得

駐點(2,1),此時f(2,1)=-2,(2,1)∈d下面求邊界上的可疑極值點

①在區域的邊界x+3y=6,x≥0,y≥0上,設拉格朗日函式l(x,y;λ)=xy-x-2y+λ(x+3y-6),x≥0,y≥0∴令l′x=y-1+λ=0

l'y=x-2+3λ=0

l'λ=x+3y-6=0

解得x=910

,y=17

10此時,f(910

,1710)=?

277100

②在區域的邊界x=0,x+3y≤6(即y≤2)上很明顯f(x,y)的最大值為f(0,0)=0,最小值為f(0,2)=-4

③在區域的邊界y=0,x+3y≤6(即x≤6)上容易看出f(x,y)的最大值為f(0,0)=0,最小值為f(6,0)=-6

比較上面求出來的各個極值點和最值點,

最大的f(0,0)=0為最大值,最小的f(6,0)=-6為最小值∴f(x,y)在區域d上的最大值為f(0,0)=0,最小值為f(6,0)=-6

已知:【(x^2+y^2)-(x-y)^2+2y(x-y)】÷4y=1,求4x/(4x^2×y^2)-1/(2x+y)的值要詳細過程啊

3樓:匿名使用者

【(x^2+y^2)-(x-y)^2+2y(x-y)】÷4y=1,(x²+y²-x²-y²+2xy+2xy-2y²)÷4y=14xy-2y²=4y

4x-2y=4

2x-y=2

4x/(4x^2×y^2)-1/(2x+y) 題目可能打錯了,你檢查一下.

如下題目如下:

4x/(4x^2-y^2)-1/(2x+y)=(4x-2x+y)/(2x+y)(2x-y)=(2x+y)/(2x+y)(2x-y)

=1/(2x-y) ..........把2x-y=2代入即可

=1/2

已知xyz不為0 且x-y-z=0 x+2y-4z=0 求x²+2y²/x²+y²+z平方的值 要過程

4樓:蔣山紘

∵xyz≠0

∴x≠0,y≠0,z≠0

∵x﹣y﹣z=0

∴x=y+z

∵x+2y﹣4z=0

∴x=﹣2y+4z

∴y+z=﹣2y+4z

∴3y=3z

∴y=z

∴x=2y

∴(x²+2y²)/(x²+y²+z²)=(3x²/2)/2x²=3/4

5樓:探世錄

由xyz!=0,x-y-z=o,x+2y-4z=0得下在,x=2z,y=z.

所以代入原式得3/4

求函式z x 2 y 2 6x 8y在閉區域x 2 y 2小於等於36的上的最值?最大值

max f x,y x 2 y 2 6x 8y x 3 2 y 4 2 25 x 2 y 2 36 畫出圖形即可知道 原題實際上是求f x,y 這個圓的圓心 3,4 到圓x 2 y 2 36上的最大距離,即求l 2 x 3 2 y 4 2的最大值,將x 2 y 2 36代入上式得 l 2 8 36 ...

設D xy1,求在D區域的雙重積分 xy dxdy

親,你是做 的吧?賣的是神馬東西?我想買點本人來解答 被積式是乙個關於x,y的偶函式,你可以拆開了 x y dxdy x dxdy y dxdy 被積式就是乙個一元函式,奇偶性馬上就是知道,分別用對稱性計算。也可以直接利用對稱性計算,這裡就要判斷二元函式的奇偶性。因為f x,y x y 是關於x,y...

求函式u x2 y2 z2在約束條件z x2 y2和x y z 4下的最大和最小值

把z x2 y2代入x y z 4,配方得 x 1 2 2 y 1 2 2 9 2,所以x 1 2 3 2 cosv,y 1 2 3 2 sinv,z 5 3 2 cosv sinv u 1 2 3 2 cosv sinv 9 2 25 15 2 cosv sinv 9 2 1 2sinvcosv ...