這個行列式怎麼算,這個行列式怎麼算

時間 2021-09-12 16:08:52

1樓:濯楚雲

行列式在數學中,是由解線性方程組產生的一種算式,是取自不同行不同列的n個元素的乘積的代數和。

舉例:對於二階行列式:

|a b|

|c d|=ad-bc

詳細可以參見二階行列式

對於三階行列式:

| a b c |

| x1 x2 x3 |

| y1 y2 y3 |

結果可以寫為:a*(x2*y3-x3*y2)-b*(x1*y3-x3*y1)+c*(x1*y2-x2*y1)

即:a*x2*y3-a*x3*y2-b*x1*y3+b*x3*y1+c*x1*y2-c*x2*y1

詳細可以參見三階行列式

以此類推,對於任意階行列式,都可以改寫為第一行某一元素與從第二行起的某乙個n-1階行列式的積,以此不斷遞推,直到分為某項與二階行列式的積,然後再自此回溯最終可得解。

詳細可以參見n階行列式

2樓:酒酒

這題應該書上有公式,體型是副對角線行列式,和上三角行列式差乙個符號,也就是1*2*3*……*n*(-1)^[n(n-1)/2]

這個行列式怎麼計算

3樓:揚年

其他行(列)都加到第一行(列),然後提乙個(a+b+c)出來,四階行列式變成三階行列式就很好算了。

這個行列式怎麼算?

4樓:匿名使用者

行列式在數學中,是由解線性方程組產生的一種算式,是取自不同行不同列的n個元素的乘積的代數和。

舉例:對於二階行列式:

|a b|

|c d|=ad-bc

詳細可以參見二階行列式

對於三階行列式:

| a b c |

| x1 x2 x3 |

| y1 y2 y3 |

結果可以寫為:a*(x2*y3-x3*y2)-b*(x1*y3-x3*y1)+c*(x1*y2-x2*y1)

即:a*x2*y3-a*x3*y2-b*x1*y3+b*x3*y1+c*x1*y2-c*x2*y1

詳細可以參見三階行列式

以此類推,對於任意階行列式,都可以改寫為第一行某一元素與從第二行起的某乙個n-1階行列式的積,以此不斷遞推,直到分為某項與二階行列式的積,然後再自此回溯最終可得解。

詳細可以參見n階行列式

這個行列式怎麼計算呢

5樓:

我這個比較傳統,就是一步步步化成下三角行列式,有點兒麻煩但是正確率高,結果是40。

6樓:

行列式性質,盡量出多的0.然後用代數余子式計算結果,就是扣去零最多的行和列,剩下3*3的行列式,然後正常算

7樓:溫溫溫時時時

翻開線性代數的課本,上面有

8樓:匿名使用者

大學學的數學就有,可是給忘了!

這個行列式怎麼計算呢?

9樓:紫月開花

行列式在數學中,是由解線性方程組產生的一種算式,是取自不同行不同列的n個元素的乘積的代數和。

舉例:對於二階行列式:

|a b|

|c d|=ad-bc

詳細可以參見二階行列式

對於三階行列式:

| a b c |

| x1 x2 x3 |

| y1 y2 y3 |

結果可以寫為:a*(x2*y3-x3*y2)-b*(x1*y3-x3*y1)+c*(x1*y2-x2*y1)

即:a*x2*y3-a*x3*y2-b*x1*y3+b*x3*y1+c*x1*y2-c*x2*y1

詳細可以參見三階行列式

以此類推,對於任意階行列式,都可以改寫為第一行某一元素與從第二行起的某乙個n-1階行列式的積,以此不斷遞推,直到分為某項與二階行列式的積,然後再自此回溯最終可得解。

詳細可以參見n階行列式

行列式的定理,行列式 按行列法則

第一章 行列式 1 把n個不同的元素排成一列,叫做這n個元素的全排列。也簡稱排列 2 n個不同元素的所有排列的種數,通常用pn表示。pn n 3 當某兩個元素的先後次序與先規定好的標準次序不同時,就說有1個逆序,所有逆序的總數叫這個排列的逆序數。逆序數為奇的排列叫做奇排列,逆序數為偶的排列叫做偶排列...

行列式如何計算,怎麼計算行列式的值???

單純用某個性質是不夠的,大多是多個方法混合使用,有時需要一定的技巧 但行列式的計算千變萬化,不必在這方面花太多的時間掌握一些基本的技巧就可以了 行列式的計算方法,供你參考 2,3階行列式的對角線法則,4階以上 含4階 是沒有對角線法則的 用性質化上 下 三角形,上 下 斜三角形,箭形按行列定理 la...

計算行列式,計算行列式Dn 1 a1 1 。。。1 1 1 a2 。。。1 。。。 1 1。。。1 an

後天肯定早睡 解析如下 dn 1 a1 1 1 1 1 a2 1 1 1。1 an 第一行乘 1加到各行。1 a1 1 1 a1 a2 0 a1 0。an 所有第i列乘a1 ai加到第1列。1 a1 n,i 2 a1 ai 1 1 0 a2 0 0 0。an 1 a1 n,i 2 a1 ai a2 ...