1樓:良駒絕影
csina=acosc
sincsina=sinacosc
因為:sina≠0
則:sinc=cosc,即:tanc=sinc/cosc=1c=45°
c²=a²+b²-2abcosc
c²=a²+b²-√2ab -----------------------(1)
因:a²+b²=4(a+b)-8
即:(a²-4a+4)+(b²-4b+4)=0(a-2)²+(b-2)²=0
則:a=b=2
代入(1),得:
c²=2²+2²-4√2
c=√[4-4√2]
c=2√(2-√2)
2樓:匿名使用者
csina=acosc 得: sina=acosc/c...........................................1
根據正弦定理得:a/sina=c/sinc 即:sina=asinc/c................2
聯立1、2得:tanc=1
所以可知:角c=45度
a^2+b^2-4(a+b)+8=0
(a-2)^2+(b-2)^2=0
a-2=b-2=0
a=2,b=2
c^2=a^2+b^2-2abcosc=4+4-2*4*根號2/2=8-4根號2
c=根號(8-4根號2)=2根號[2-根號2]
三角形abc中,角a,b,c所對的邊分別為a,b,c且滿足csina=acosc求
3樓:匿名使用者
求 根號3 sina-cos(b+π抄/4)的最大值襲,並求取得最大值時角a,b的大小
√3sina-cos(b+45)
=√3sina+cosa
=2(√3/2sina+1/2cosa)
=2(cos30sina+sin30cosa)=2sin(a+30)
當a+30=90時,有最大值:為√3sina-cos(b+45)=2此時a=60,b=180-60-45=75
4樓:揚鈺藏思瑩
解析:(i)由bai正弦定理du得sincsina=sinacosc,
zhi∵0<a<π
dao,
∴專sina>0,
∴sinc=cosc,又cosc≠0,
∴tanc=1,又c是三角形的內角
即∠c=π4…(4分)
(ii)3sina-cos(b+c)=3sina-cos(π屬-a)=3sina+cosa=2sin(a+π6)…(7分)又0<a<3π4,π6<a+π6<11π12,所以a+π6=π2即a=π3時,2sin(a+π6)取最大值2. (10分)
綜上所述,3sina-cos(b+c)的最大值為2,此時a=π3,b=5π12…(12分)
在三角形abc中,角a,b,c所對的邊分別為a,b,c,且滿足csina=acosc?(1)求角c的大小
5樓:看
解:根據正弦定理
a/sina=c/sinc
根 csina=acosc比較得sinc=cosc所以 c=45度
6樓:匿名使用者
a/sina=c/sinc=c/cosc
所以sinc=cosc
c=45度
7樓:若無·其事
a/sina=c/sinc=2r csina=acosc 所以 sinc=cosc c=45度
在三角形abc中,角a,b,c所對的邊分別為a,b,c若a/cosa=b/cosb=c/cosc,
8樓:匿名使用者
由正弦定理得:a/sina=b/sinb=c/sinca/cosa=b/cosb=c/cosc
sina/cosa=sinb/cosb=sinc/cosctana=tanb=tanc
a=b=c
三角形是等邊三角形。
在三角形abc中,角a,b,c所對的邊分別為a,b,c,且滿足csina=√3acosc.
9樓:小百合
1)∵a/sina=c/sinc
∴a*sinc=√3acosc
tanc=√3
c=60°
2)1/2absinc=√3/2
a²+b²-2abcosc=(√3)²
整理得:
{ab=2
{a²+b²-ab=9
∴(a+b)²=9+2*3
a+b=√15
三角形周長:√15+√3
10樓:匿名使用者
由正弦定理,sincsina=√3sinacosc,則sina(sinc-√3cosc)=0,而sina不為0,推出tanc=√3,所以c=60度
三角形abc的面積=0.5*ab*sinc=√3/2,所以ab=2。由余弦定理,c^2=a^2+b^2-2abcosc,得到a^2+b^2=5,結合ab=2求得a=2,b=1,周長是3+√3。
在三角形ABC中,角A,B,C,所對的邊為a,b,c 已知a
西域牛仔王 根據正弦定理得 sina 2sinbsina 所以 sinb 1 2 由於 c 3b b 因此 b 為銳角,則 b 6 據正弦定理,sinc 3sinb 3 2 因此 c 3 所以 a 2 1 因為三角形面積s 1 2 absinc 1 2 a b 3 2 2 3 解得 a b 8 2 ...
在三角形abc中已知,在三角形ABC中,已知2asinA 2b c sinB 2c b sinC 1 求角A
根據題目由正弦定理得 sina a 2r,sinb b 2r,sinc c 2r代入化簡得 a 2 b 2 c 2 bc 所以cosa 1 2 所以a 120 由 1 中的 a方 b方 c方 bc 得 到sina方 sinb方 sinc方 sinbsinc,又因為a 120 所以得方程組 sinb方...
在三角形abc中,a,b,c分別是角a b c的對邊,且2cos(b c) cos2a3
我不是他舅 cos b c cos 180 a cosacos2a 2 cosa 2 1 所以2 cosa 2 2cosa 1 3 2 cosa 2 cosa 1 4 0 cosa 1 2 2 0 cosa 1 2 b c 3 兩邊平方 b 2 2bc c 2 9 b 2 c 2 9 2bc cos...