1樓:匿名使用者
1、1到n的平方和推導:1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6
由1²+2²+3²+。。。+n²=n(n+1)(2n+1)/6
∵(a+1)³-a³=3a²+3a+1(即(a+1)³=a³+3a²+3a+1)
a=1時:2³-1³=3×1²+3×1+1
a=2時:3³-2³=3×2²+3×2+1
a=3時:4³-3³=3×3²+3×3+1
a=4時:5³-4³=3×4²+3×4+1
......
a=n時:(n+1)³-n³=3×n²+3×n+1
等式兩邊相加:
(n+1)³-1=3(1²+2²+3²+。。。+n²)+3(1+2+3+。。。+n)+(1+1+1+。。。+1)
3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+2+3+。。。+n)-(1+1+1+。。。+1)
3(1²+2²+3²+。。。+n²)=(n+1)³-1-3(1+n)×n÷2-n
6(1²+2²+3²+。。。+n²)=2(n+1)³-3n(1+n)-2(n+1)
=(n+1)[2(n+1)²-3n-2]
=(n+1)[2(n+1)-1][(n+1)-1]
=n(n+1)(2n+1)
∴1²+2²+。。。+n²=n(n+1)(2n+1)/6
2、1到n的立方和推導:1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
推導: (n+1)^4-n^4=4n^3+6n^2+4n+1,
n^4-(n-1)^4=4(n-1)^3+6(n-1)^2+4(n-1)+1,
......
2^4-1^4=4*1^3+6*1^2+4*1+1,
把這n個等式兩端分別相加,得:
(n+1)^4-1=4(1^3+2^3+3^3...+n^3)+6(1^2+2^2+...+n^2)+4(1+2+3+...+n)+n
由於1+2+3+...+n=(n+1)n/2,
1^2+2^2+...+n^2=n(n+1)(2n+1)/6,
1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
2樓:校椹風雲
平方和sn= n(n+1)(2n+1)/6,
推導:(n+1)^3-n^3=3n^2+3n+1,
n^3-(n-1)^3=3(n-1)^2+3(n-1)+1,
.......
2^3-1^3=3*(1^2)+3*1+1,
把這n個等式兩端分別相加,得:
(n+1)^3 -1=3(1^2+2^2+3^2+.+n^2)+3(1+2+3+...+n)+n,
由於1+2+3+...+n=(n+1)n/2,
代人上式整理後得:
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6 。
立方和sn =[n(n+1)/2]^2,
推導: (n+1)^4-n^4=4n^3+6n^2+4n+1,
n^4-(n-1)^4=4(n-1)^3+6(n-1)^2+4(n-1)+1,
......
2^4-1^4=4*1^3+6*1^2+4*1+1,
把這n個等式兩端分別相加,得:
(n+1)^4-1=4(1^3+2^3+3^3...+n^3)+6(1^2+2^2+...+n^2)+4(1+2+3+...+n)+n
由於1+2+3+...+n=(n+1)n/2,
1^2+2^2+...+n^2=n(n+1)(2n+1)/6,
代人上式整理後得:
1^3+2^3+3^3+...+n^3=[n(n+1)/2]^2
3樓:易方達
1^3+2^3+……+n^3=(1+2+…+n)^2,
1^2+……+n^2=n(n+1)(2n+1)/6。
1到n的次方和公式,1到N的平方和,立方和公式是怎麼推導的?
新南一竹 求1 5 2 5 3 5 n 5。首先寫出和式的前6項 即1 5 1 2 5 32 3 5 243 4 5 1024 5 5 3125 6 5 7776 再求出相鄰兩數之差,得 31 211 781 2101 4651 再次求出相鄰兩數之差,得 180 570 1320 2550 再次求,...
正整數1到n的平方和立方和公式是怎么推
平方和sn n n 1 2n 1 6,推導 n 1 3 n 3 3n 2 3n 1,n 3 n 1 3 3 n 1 2 3 n 1 1,2 3 1 3 3 1 2 3 1 1,把這n個等式兩端分別相加,得 n 1 3 1 3 1 2 2 2 3 2 n 2 3 1 2 3 n n,由於1 2 3 n...
求用c編寫,求用C 編寫1 n的平方和,如1的平方 2的平方 3的平方。。。 n的平方,n為需輸入的自然數。
這很簡單,乙個簡單的for迴圈就行 int sum 0 for n 0 n 說明 此for迴圈出來的sum就是所求的n的平方和。但有前提 前面需保證輸入的數n是正整數 console.write 請輸入n n為自然數 int num int.parse console.readline int su...