1樓:
y'=cos(x+y)*(1+y')=cos(x+y)+y'cos(x+y)
∴y'=cos(x+y)/[(1-cos(x+y)]y''=-sin(x+y)*(1+y')+y''cos(x+y)+y'*(-sin(x+y)*(1+y'))
∴[cos(x+y)-1]y''=sin(x+y)*(1+y')²,即y''=sin(x+y)/[cos(x+y)-1]³
2樓:易冷鬆
y'=[sin(x+y)]'(x+y)'=(1+y')cos(x+y)=cos(x+y)+y'cos(x+y)
y'=cos(x+y)/[(1-cos(x+y)]y''=[cos(x+y]'(x+y)'+y''cos(x+y)+y'[cos(x+y)]'
=-(1+y')sin(x+y)+y''cos(x+y)-y'(1+y')sin(x+y)
y''[cos(x+y)-1]=(1+y')^2sin(x+y)=^2sin(x+y)
=sin(x+y)/[cos(x+y)-1]^2y''=sin(x+y)/[cos(x+y)-1]^3
求x-y=sin(x+y)的隱函式的二階導數,具體步驟可以有嗎?
3樓:匿名使用者
x-y=sin(x+y)
兩邊求導:
1-y′ = cos(x+y) * (1+y′)1 - cos(x+y) = [1+cos(x+y)]y′y′ = [1-cos(x+y)] / [1+cos(x+y)]= [2-1-cos(x+y)] / [1+cos(x+y)]= 2 / [1+cos(x+y)] - 1兩邊同時求導:
y ′′ = -2sin(x+y) * (1+y′) / [1+cos(x+y)]²
= / [1+cos(x+y)]²= -4sin(x+y) / [1+cos(x+y)]³
求隱函式y cos x y 求y的一階導數和二階導數
晴天擺渡 y cos x y 兩邊同時對x求導得 y sin x y 1 y 得y sin x y 1 sin x y 式兩邊同時對x求導得 y sin x y y cos x y 1 y 1 y 即y cos x y 1 y 1 sin x y 將 代入上式得 y cos x y 1 sin x ...
如何理解函式二階可導,函式的二階導數不
f x 連續,存在最大值m,最小值m 所以,m f x m m f xi m i 1,2,3,n nm f x1 f x2 f x3 f xn nm m f x1 f x2 f x3 f xn n m 由介質定理推論得 存在 a,b 使得 f f x1 f x2 f x3 f xn n 函式二階可導...
求函式y e xcosx的二階及三階導數
y e x cosx y e x cosx e x cosx e x cosx e x cosx e x sinx e x cosx sinx y e x cosx sinx e x cosx sinx e x cosx sinx e x cosx sinx e x sinx cosx e x co...