1樓:
根據這個極限,很自然聯想到比值法,但是這裡的級數沒有點明是正項級數。根據極限的保號性,當n充分大時,u(n+1)/un>0,所以un>0或un<0。所以,去掉前有限項後un恆大於零或小於零。
如果un>0,由比值法直接得到級數發散。如果un<0,考慮通項是-un的正項級數,其發散,所以原級數也發散。
2樓:匿名使用者
寫了一堆,竟然沒了,哎,重新寫
我看了你的問題,你也問在點兒上了,其實那個標準答案寫的都有點多餘
為什麼別人會想到加絕對值號呢??
恩,你有名沒有發現,書上專門講了一節級數收斂的判別法則——是專門針對正項級數!!!
對於一般的常數項級數怎麼辦??
任何一個級數,把通項加絕對值是不是就變成正項級數了!
那麼對這個正項級數,你用比值判別法,可以判斷出正項級數收斂,即這個級數就是絕對收斂的!
而書上有一個定理,“如果一個級數絕對收斂,那麼他本身也肯定是收斂的”!
嘿嘿,書上在講完正項級數判別法後,有了這麼個定理,你就可以通過把通項加絕對值變成正項級數,然後用正項級數判別法,判斷原級數是是否絕對收斂,如果絕對收斂,那本身必然收斂,如果不是絕對收斂的,那麼也不能說明原級數就不收斂,只是你要想別的辦法嘍——}
高等數學中幾道無窮級數的題目 10
3樓:
1、相鄰的兩項應該抄是un與u(n+1)比較,現在襲是把bai奇偶項分開了,所以un>
duu(n+1)就變成了兩個
zhi式子:n取偶數時dao,u2n>u(2n+1);n取奇數時,u(2n-1)>u2n。所以要驗證的式子變成了u(2n-1)>u2n>u(2n+1)。
2、教材上給出了冪級數的收斂性的一個重要的定理-abel定理,∑anx^n在x=a處收斂,則|x|<|a|內冪級數絕對收斂。只要理解了這個定理,就會明白r≥2。
第二個問題還是應用了abel定理,r≥2,t=1在收斂區間內。
3、根據傅立葉級數的收斂定理,連續點上,傅立葉級數收斂於函式值。
4樓:匿名使用者
太多了,分開提問才會有人回答。
求教高等數學題目(關於無窮級數)
5樓:
注意:∑an收斂,但∑a2n,∑a(2n+1)不一定收斂。例如∑(-1)^n/n。
a可以用這個定理判斷是正確的。
c不能用這個定理。我考慮的是用級數的定義,假設級數∑an的前n項和是sn,sn→a。c中級數的前n項和是tn,則tn=(a2+a3)+(a4+a5)+……+(a2n+a(2n+1))=s(2n+1)-a1→a-a1,所以c成立。
b和d都是錯誤的。
b的反例:an=(-1)^n/(√n),則b中級數是∑[1/n+1/(n+1)]是發散的。
6樓:匿名使用者
級數(c)其實就是原級數,當然收斂。
7樓:匿名使用者
同學,定理上針對的是兩個不同的函式項級數un和vn,並不是an 和 a(n+1)
8樓:
你這個符號太難理解了!
高等數學中無窮級數收斂判別法的問題
第一個 貌似書上印的這個是個推論吧。記不太清總之這個定理是說大的收斂則小的級數也收斂,小的發散則大的也發散。反之不成立。你就這樣記。第二個 你可以去看看高數上冊對無窮小的定義,老師的課堂筆記也翻一翻吧第三個 收斂級數中部分項構成的新級數也是收斂的,就是相同的斂散性質,這個貌似是書上的定理吧,你翻翻課...
高等數學,無窮級數
尹六六老師 根據阿貝爾定理,可以得到如下推論 如果冪級數不是僅在x 0點收斂,也不是在 內收斂,則一定存在一個正數r,當 x r時,冪級數發散。這個r稱為冪級數的收斂半徑。所以,你求出 lim u n 1 u n lim a n 1 a n x 後,令lim a n 1 a n 根據比值審斂法,x ...
高等數學中,無窮級數與高中的數列以及極限有多大的聯絡
高中的掌握的初等數學方法對高等數學的學習是很重要的。無窮級數一般只需要掌握高中數列的基礎知識即可,但你要深入的話,比如做考研數學 競賽數學中級數部分的難題很多是依靠高中數學數列部分的思想方法的。但即使高中數學不是很好,也不會對學高等數學有太大影響,只是稍微多花點時間和精力罷了。大學裡面的高數教學要求...