1樓:
1)lz說的對,缺項類不能使用定理,必須使用定義來做2)當級數中有階乘時,強烈建議使用比值法,不要用根值法3)lz你誤算出(-1,1)我在下圖也推測了一下是**錯了具體解答請見下圖
2樓:匿名使用者
冪級數裡有一個求收斂半徑的定理:
對冪級數∑anx^n,若lim(n->∞)│an+1/an│=l,或lim(n->∞)√│an│=l
則冪級數∑anx^n的收斂半徑 1/l, 當0∞)│an+1/an│=lim(n->∞)[1/(2n+1)]=0
∴根據定理它的收斂半徑r=+∞
故它的收斂域是(-∞,+∞).
(2)∵e^x=∑x^n/n!
其中an=1/n!
又lim(n->∞)│an+1/an│=lim(n->∞)[1/(n+1)]=0
∴根據定理它的收斂半徑r=+∞
故它的收斂域是(-∞,+∞).
說明:當然這兩題也可以用定理中的根值法lim(n->∞)√│an│=l來求出收斂半徑,結果一樣。
高等數學冪級數收斂域問題
3樓:匿名使用者
右端點,當x=–2/3時,一般項是
[3^n+(–2)^n]/n·1/3^n,分成兩項1/n+(–1)^n(2/3)^n·1/n,第一項是調和級數是發散的,第二項是一個交錯級數,容易得出它是絕對收斂的從而交錯級數本身也是收斂的,或者直接由萊布尼茲判別法判別交錯級數是收斂的,總之,一項發散,一項收斂,按級數性質,相加得到的級數是發散的。左端點x=–4/3代入冪級數後也分成兩項(–1)^n·1/n+(2/3)^n·1/n,這時第一項是收斂的交錯級數,第二項是收斂的正項級數,相加得到的級數收斂。綜上,左端點收斂,右端點發散。
4樓:布霜
看左邊函式 √(1+x), x = ±1 都有意義。
1/√(1+x), x = -1 無意義, x = 1 有意義。
5樓:
兩端點分別代入原級數中去,分別判斷斂散性啊
高等數學,這個冪級數的收斂域如何求解?
6樓:西域牛仔王
ⁿ√|u(n)|
--> |x| (n --> ∞),
令 |x|<1 得 -1<x<1,
x=1 時,是一般項遞減趨於 0 的交錯級數,由萊布尼茲判別法,級數收斂;
x= - 1 時,是與 p=2/3<1 的發散級數等價的調和級數,所以收斂域 ( - 1,1 ]。
求解高等數學,冪級數的收斂域
7樓:匿名使用者
因為an+1/an=2n2/(n+1)^2當n趨於無窮的時候,極限等於2.
所以收斂半徑就是1/2
當x=-1/2收斂,x=1/2也收斂,所以收斂域【-1/2,1/2】選擇c請採納
高等數學求解,該冪級數的收斂半徑,收斂域,以及和函式是多少?
8樓:匿名使用者
因為an+1/an=n+2/n在n趨於無窮的時候等於1.
所以收斂半徑就是1.
x=1,不收斂,x=-1收斂,所以收斂域是【-1,1)和函式的求解見答案請採納
求冪級數的收斂域及和函式,大學高等數學 求冪級數的收斂域及其和函式 求詳解
橘落淮南常成枳 冪級數後項係數與前項係數比的極限是1,所以收斂半徑r 1.當x 1時,級數收斂 當x 1時,級數收斂。故冪級數的收斂域是 1,1 設f x n 1,x n n 1 則有xf x n 1,x n 1 n 1 上式兩邊對x求導,得 xf x n 1,x n x 1 x 所以xf x 0,...
高等數學中無窮級數收斂的題目,高等數學中幾道無窮級數的題目 10
根據這個極限,很自然聯想到比值法,但是這裡的級數沒有點明是正項級數。根據極限的保號性,當n充分大時,u n 1 un 0,所以un 0或un 0。所以,去掉前有限項後un恆大於零或小於零。如果un 0,由比值法直接得到級數發散。如果un 0,考慮通項是 un的正項級數,其發散,所以原級數也發散。 寫...
高等數學級數問題,高等數學關於級數的問題
電燈劍客 記u n sum f k v n int f x dx,求和和積分範圍都是n到2n 那麼利用單調性知道 u n f n v n u n 1 n 1 f 2n u n n 1 f n 2 nf 2n v n nf n 3 由於f n 單調有界,必有極限,記a lim f n 那麼a 0。若a...