一道高中數學關於橢圓的題目,一道高中數學題 關於橢圓 最好有詳解 謝謝!

時間 2021-08-11 17:31:14

1樓:匿名使用者

上樓那位朋友,一看你的答案就知道錯了,k=0難道可以嗎.....

你首先把f(x)函式的影象大致畫一下,很簡單的,知道週期t=2k,(|k|=圓半徑,0)為零點,在一個週期裡(x<=|k|)考慮:

f(x)上的點到原點距離最大的即為x=|k|或者x=|k/2|,又因為圓至少覆蓋一個最大和最小值,所以有

k^2/4+3<=k^2,

並且(k!=0即k不等於0)解得

k>=2或k<=-2.

附加 圓最多隻能覆蓋一個最值的。。。

解析幾何題,當然是**法最方便了 加油吧

2樓:匿名使用者

小朋友,這條題目是解析幾何中,圓以及三角函式sin的影象求解的問題。不是關於橢圓的!~

在圓中,圓心為(0,0) 半徑是k,這個k為變數可以任意改變大小在三角函式中,這個k決定了函式的週期(t=2π/w)導致函式會伸縮不妨自己假設一下,k為1 看看2個的影象是否有交點 然後找找規律好嗎?

o(∩_∩)o~

還是不懂再call我 q 495656174

3樓:

f(x)=3^0.5*sin(pi*x/k);他距離原點的最大最小值在 x=k/2,x=-k/2;

對應的最大值最小值3^0.5,-3^0.5;也即是(k/2,3^0.

5),(-k/2,-3^0.5),這兩個最大值最小值點在園的內部;顯然有(k/2)^2+(3^0.5)^2<=k^2;解這個不等式得到,-2=

一道高中數學題(關於橢圓 最好有詳解 謝謝!)

高中數學一道橢圓題 求高手來解答!

高中數學,關於橢圓的一個題目,求詳細解題步驟。**等,看懂了馬上採納! 50

4樓:匿名使用者

在rt∆f₁df₂中,∠pf₁f₂=30°,故f₁d=2f₂d..............①;

且f₁d²=f₁f₂²+f₂d²..............②;

將①代入②式得:4f₂d²=f₁f₂²+f₂d²,即有3f₂d²=f₁f₂²............③;

其中f₂d²=b²(1-c²/a²)=b²(1-e²);f₁f₂=2c;代入③式得:

3b²(1-e²)=4c²;∵b²=a²-c²;∴有 3(a²-c²)(1-e²)=4c².............④;

將④式兩邊同除以a²得:3(1-e²)²=4e²,化簡得:

3e^4-10e²+3=(3e²-1)(e²-3)=0

5樓:

解:分享一種解法。設f2點的座標為f2(c,0),則p點的座標可以表示為p(c,y)。

∴rt△pf1f2中,pf2=y,pf1=2y。f1f2=(2c)=(√3/2)pf1=(√3)y。∴y=2c/√3。

又,根據橢圓的定義,有pf2+pf1=2a,∴y=2a/3。∴2a/3=2c/√3。∴e=c/a=√3/3。供參考。

6樓:桂雅安

看這裡,其實挺簡單的。

一道高中數學題目

7樓:活寶

^b2=b1+[4/3]^0 b3=b2+[4/3]^1 b4=b3+[4/3]^2 b(n+1)=bn+[4/3]^n-1 +)得b2+b3+……+bn+b(n+1)=b1+b2+b3+……+bn+([4/3]^0+[4/3]^1+……+[4/3]^n-1) 兩邊消去b2+b3+……+bn b(n+1)=b1+([4/3]^0+[4/3]^1+……+[4/3]^n-1) 累加的計算過程中注意格式版對齊,權就比較容易算了

求數學大神一道關於橢圓的題

8樓:水煮魚

向量ep·向量qp

=向量ep·(向量qe+向量ep)

=向量ep·向量qe +向量ep·向量ep∵ep⊥eq

∴=|向量ep|²

到此需要引數方程

設p=(6cosa,3sina)

|向量ep|²

=(6cosa-3)²+(3sina)²

=9(4cos²a-4cosa+1+sin²a)=9(1+3cos²a-4cosa+1)

=9(3cos²a-4cosa+2)

內部函式3cos²a-4cosa對稱軸是cosa=2/3(能取到)∴最小值

=9*(3*4/9-8/3+2)

=9*(2-4/3)

=9*2/3

=6向量ep·向量qp最小值=6

一道高中數學競賽題,一道高中數學競賽題目

f 1 4 f 2 可重複的從四個數字中取兩個為16當n 3時,考慮f n 1 最後兩位數字12 1 21 2 13 1 31 3 14 1 41 4 23 2 32 3 24 2 42 4 34 3 43 4 在n 1位數字的最後加上第n 2位的數字構成n位數字共f n 1 種然後分上述12種情況...

高中數學 一道簡單的集合題目》,高中數學一道 集合的題目

解 將y x 1代入圓的方程 解得 x1 1,x2 0,所以 a 1,0 b 0,1 設ab中點為c,則c 1 2,1 2 又k ab 1,所以k oc 1 所以方程為 y x。 音箱兒 有多種方法 第1種 聯立方程x y 1 0,x 2 y 2 1可得交點座標為a 0,1 b 1,0 ab的垂直平...

一道高中數學導數問題, 求解 一道高中數學導數問題

給予的天空 當a 0,a 1時,因為f 0 0,且f x 在r上單調遞增,故f x 0有唯一解x 0 6分 所以x,f x f x 的變化情況如表所示 又函式y f x t 1有三個零點,所以方程f x t 1有三個根,而t 1 t 1,所以t 1 f x min f 0 1,解得t 2 10分 t...