1樓:匿名使用者
大學 數學分析可以學到。用反證法。
證明根號2是無理數
如果√2是有理數,必有√2=p/q(p、q為互質的正整數)
兩邊平方:2=p^/q^
p^=2q^
顯然p為偶數,設p=2k(k為正整數)
有:4k^=2q^,q^=2k^
顯然q業為偶數,與p、q互質矛盾
∴假設不成立,√2是無理數
下面的這個證明曾經是我最喜歡的關於無理數的存在性的證明,它實在是太神奇了。
假設(p/q)^2=2,那麼p^2=2q^2。我們將要證明,一個數的平方等於另一個數的平方的兩倍是根本不可能的。如果對一個平方數分解質因數,它必然有偶數個因子(x^2的所有質因子就是把x的質因子複製成兩份)。
於是,p^2有偶數個質因子,q^2有偶數個質因子,2q^2有奇數個質因子。等號左邊的數有偶數個質因子,等號右邊的數有奇數個質因子,大家都知道這是不可能的,因為同一個數只有一種分解質因數的方法(唯一分解定理)。
這個證明還有一種更加神奇的變化。p^2和2q^2的質因子中,因子2的個數肯定是一奇一偶。那麼它們轉化成二進位制後,末尾0的個數肯定也是一奇一偶。因此,這兩個數不可能相等。
今天,我見到了一個更加簡潔的證明。它就**於哲牛介紹的那篇文章。這個證明雖然與前面的證明有些類似,但它的簡潔性足以讓我打算寫下今天這篇4000字的文章。
看後我大為折服,這真的叫做the power of ****** ideas in mathematics。
同樣是證明不存在整數p, q使得p^2=2q^2,這個證明只需要一句話。假如p、q是最小的正整數使得p^2=2q^2,看圖,兩個邊長為q的小正方形放在一個邊長為p的大正方形裡,那麼圖中深灰色正方形的面積就等於兩個白色正方形面積之和(面積守恆),於是我們就找到了具有同樣性質的更小的整數p和q。仔細體會一下這個“面積守恆”,如果a+b=c,那麼a和b重複計算了的必然是c裡還沒有算過的。
很有意思。
matrix67
2樓:眼緣
大概的求無限迴圈小數的約分位
6.19952
如何用筆算求算術平方根?
3樓:匿名使用者
如果想用筆算求算術平方根,在初二代數中講完平方根後,有一個附錄,講得很詳細。以下的介紹不知能否講清楚:
比如求√37625.(如圖)
①將37625從個位起,向左每兩位分一節:3,76,25
②找一個最大的數,使它的平方不大於第一節的數字,本題中得1(1的平方為1,而2的平方為4,大於3,所以得1).把1寫在豎式中3的上方。
③將剛才所得的1平方寫在豎式中3的下方,並相減,然後將76移寫在本行(如圖)
④將前面所得的1乘20,再加一個數a,寫在豎式的左方(如圖),並同時把a寫在豎式的上方對準6。而這個所謂的a,是需要試驗的,使它與(20+a)的積最大且不超過276.本題中所得的a為9
⑤用9乘29,再用276減去,所得的差寫在下方
⑥繼續反覆運用步驟④和⑤。如果後面的數字不足,則補兩個0,繼續運算。如果最後的餘數是0,則該數的算術平方根是有理數;如果被開方數是小數,小數部分在分節的時候是從十分位起,每兩位小數分一節。
三分之二的算數平方根是不是有理數
4樓:一個人郭芮
2/3即 6/9
顯然其算術平方根為
3分之根號6,
當然不是有理數
下列說法正確的是( ) a.實數包括有理數、無理數和0 b.平方根是本身的數是0、1 c.無限不
5樓:手機使用者
a、實數來包括無理數源和有理數,0是有理數,故本選項錯bai誤;
b、1的平方du根是zhi
±1,0的平方根是0,即平dao方根是它本身的數只有0一個數,故本選項錯誤;
c、無限小數包括無限迴圈小數和無限不迴圈小數,即無限迴圈小數和無限不迴圈小數都是無限小數,故本選項正確;
d、如 2
+(- 2
) =0,0是有理數,故本選項錯誤;
故選c.
當一個數不是完全平方數時怎樣求他的算術平方根
6樓:匿名使用者
15129=123^2
但是如果直接讓你算15129的算術平方根,你也不一定知道是123吧讓你算15133的算術平方根呢?
不斷地用x^2逼近這個數,如果小了就增大x,如果大了就減小x,直到相等或誤差在可接受的範圍
7樓:貳蔓九逸雅
1、不是完全平方數時,直接加個根號。
2、用短除法找出能開出的一些乘數,使根號內的數最小、最簡。
比如:√20=√(4x5)=√(5x2²)=2√5.
√200=√(2x100)=10√2
求證7的平方根不是有理數,如何證明無理數的平方根一定不是有理數。 5
證明 假設 7為有理數,不妨設 7 q p,p q n 有7p 2 q 2。7是質數,q 2是完全平方數且能被7整除,故q 2中包含有偶數個7的因子,則p 2中包含有奇數個因子7。但7是質數,p 2也為完全平方數,只能包含有偶數個因子7。產生矛盾!故 7不是有理數。 反證。假設7的平方根是有理數,因...
怎樣才知道是求算術平方根還是平方根的
遺憾的廚子 這個題有兩個答案。因為最後乙個 前面有正負號,2 計算的就是算術平方根,一定取正。算術平方根是平方根為正的那乙個。如x 2 4 如果沒有明確說明,x應取平方根,因此就有兩個,一正,一負。如果說明要取其算術平方根,那就是正的那個。 黃莞茜 是平方根 是算數平方根 怎樣判斷 題目是要求我們求...
1 100這自然數的算術平方根和立方根中,無理數有多少個
怡網 有88個無理數,具體分析如下 因為1 100這100個自然數的算術平方根能開出來的有1,4,9,16,25,36,49,64,81,100 10個 再加上1 100這100個自然數的立方根能開出來的有1 8 27 64 4個 在平方根和立方根中1和64重複了 重複了2個 因此有10 4 2 1...