已知函式試討論此函式的單調性

時間 2021-08-30 10:59:07

1樓:匿名使用者

已知函式f(x)=-(2m+2)lnx+mx-(m+2)/x ,試討論此函式的單調性

解:∵函式f(x)=-(2m+2)lnx+mx-(m+2)/x ,

∴f(x)的定義域為,

∵f'(x)=-(2m+2)/x +m+(m+2)/x²

=m/x²-(2m+2)/x+(m+2)/ x2

=(x-1)[mx-(m+2)]/ x² ,

①當m=0,f'(x)=-2(x-1)/x²=0,

∴x=1,

∴f(x)的單調遞增區間為(0,1),遞減區間為(1,+∞);

②當m≠0時,令f′(x)=0,

∴x₁=1,x₂=(m+2) /m ,

若m>0,則x₁<x2,

∵當x∈(0,x₁)和x∈(x₂,+∞)時,f′(x)>0,當x∈(x₁,x₂)時,f′(x)<0,

∴f(x)的單調遞增區間為(0,x₁),(x₂,+∞),遞減區間為(x₁,x₂);

若-2<m<0,則x₂<0<x₁,

∵當x∈(0,1)時,f′(x)>0,當x∈(1,+∞)時,f′(x)<0,

∴f(x)的單調遞增區間為(0,1),遞減區間為(1,+∞);

若m<-2,則0<x₂<1,

∵當x∈(0,x₂)和x∈(x₁,+∞)時,f′(x)<0,當x∈(x₂,x₁)時,f′(x)>0,

∴f(x)的單調遞減區間為(0,x₂),(x₁,+∞),遞增區間為(x₂,x₁);

若m=-2,則x₂=0=x₁,

∵當x∈(0,1)時,f′(x)>0,當x∈(1,+∞)時,f′(x)<0,

∴f(x)的單調遞增區間為(0,1),遞減區間為(1,+∞);

綜上所述:當m>0時,f(x)的單調遞增區間為(0,x₁),(x₂,+∞),

遞減區間為(x₁,x₂),

當-2≤m≤0時,f(x)的單調遞增區間為(0,1),

遞減區間為(1,+∞),

當m<-2時,f(x)的單調遞減區間為(0,x₂),(x₁,+∞),

遞增區間為(x₂,x₁).

2樓:里昂

點評:主要是考查了導數在研究函式單調性中的運用,屬於中檔題。體現了分類討論思想的運用。

已知函式f x)lnx x,判斷函式的單調性

易得x的取值範圍為x 0 1 求出f x 的導數為f x 1 lnx x 2 令f x 0,得0e 所以原函式在 0,e 上單調增,在 e,正無窮 上單調減 我這邊正無窮無法輸 2 y xf x 1 x即y lnx 1 x x 0 於是y 1 x 1 x 2,同上述方法一樣可得,y xf x 1 x...

函式f x ae x x,a R討論y f x 的單調性

春秀榮羽壬 f x ae x 1 0 求極值點 得 e x 1 a 如果a 0,則f x 1,函式單調減 如果a 0,由e x 1 a得 極值點即為 x ln 1 a lna,當x lna時,單調減 當x lna時,單調增 魏墨徹區寅 解 如果a 0,那麼f x x,函式f x x單調減少。令f x...

函式的單調性,求函式單調性的基本方法

函式的單調性 monotonicity 也叫函式的增減性,可以定性描述在一個指定區間內,函式值變化與自變數變化的關係。當函式f x 的自變數在其定義區間內增大 或減小 時,函式值也隨著增大 或減小 則稱該函式為在該區間上具有單調性 單調增加或單調減少 在集合論中,在有序集合之間的函式,如果它們保持給...