1樓:
(1)證:當f(x)為奇函式時,f(-x) = -f(x)∫(a~x) f(-t)d(-t)
=∫(a~x) f(t)d(t)
為偶函式。
2樓:狂熱的電臺司令
∫0→x f(t)dt = f(x)-f(0) , (注意x屬於r,取正取負根本沒問題)定積分的結果就是 f(x)-f(0) 。此時x仍屬於r 。 不妨設 g(x) = f(x)-f(0) 則g(-x)= f(-x)-f(0) = f(x) - f(0) = g(x) 又定義域關於原點對稱,因此是偶函式。
因為 f(0)是常數,因此以上結論成立的關鍵是要證明 f(-x)= f(x)..........①式
證:對①式等號兩邊求導 得 左=f(-x)(-x)'= -f(-x) .............②式。
而右=f(x)
又由條件知f(x)為奇函式,故f(-x)= -f(x) 故②式等於 - [-f(x)]=f(x)=右
故左=右 從而①式成立。
綜上 ,f(t)dt從0到x上定積分是偶函式。這裡的x可以是負數。
另外提醒一點:從a到b的定積分,b不一定大於a。不信看高數上冊。(或從定積分的一個性質可解釋:
∫a→bf(x)dx= - ∫b→af(x)dx 如果b要大於a那麼要這條性質來幹嗎?)
還有如果搞不懂為什麼x屬於r建議這樣看:把x看成是t的一次函式x(t)=t, 由條件知t屬於r,因此x也屬於r。
3樓:匿名使用者
是的,根據定義證明即可,正負沒有影響
為什麼f(x)是偶函式,則∫{0,x}f(t)dt是奇函式
4樓:匿名使用者
設f(x)=∫[0,x]f(t)dt
則f(-x)=∫[0,-x]f(t)dt
作換元u=-t,則dt=-du,當t從0變到-x時,u從0變到xf(-x)=∫[0,x]f(-u)*(-du)=-∫[0,x]f(u)du
=-f(x)
∴f(x)為奇函式
5樓:數碼答疑
設x1=-t,則dx1=-dt
帶入積分f(-x)=∫f(-t)dt=-∫f(x1)dx1=-∫f(x1)dx1
6樓:嚶嚶嚶
我感覺這個錯了 比如f(x)=x^2 原函式可以是1/3x^3+1根本不是奇函式啊 求解答
設函式f(x)連續,則在下列變上限定積分定義的函式中,必為偶函式的( )a.∫x0t[f(t)+f(-t)]dt
7樓:手機使用者
由於:f(x)=
f(t)dt與f(x)的奇偶性關係為:
當f(x)為偶函式時,f(x)=∫x0
f(t)dt為奇函式;
當f(x)為奇函式時,f(x)=∫x0
f(t)dt為偶函式.
因此:要判斷f(x)=∫x0
f(t)dt的奇偶性只需要判斷被積函式f(x)的奇偶性.對於選項a:被積函式為:
g(x)=x[f(x)+f(-x)];
g(-x)=-x[f(-x)+f(-(-x))]=-x[f(x)+f(-x)]=-g(x)為奇函式,故∫x
0t[f(t)+f(-t)]dt為偶函式,a選項對.對於選項b:被積函式為:
g(x)=x[f(x)-f(-x)];
g(-x)=-x[f(-x)-f(-(-x))]=-x[f(-x)-f(x)]=x[f(x)-f(-x)]=g(x)偶函式故∫x
0t[f(t)+f(-t)]dt為奇函式,b選項不對.對於選項c:被積函式為:
g(x)=f(x2)
g(-x)=f((-x)2)=f(x2)=g(x)偶函式故∫x0t[f(t)+f(-t)]dt為奇函式,c選項不對.對於選項d:被積函式為:
g(x)=f2(x)
g(-x)=f2(-x)
因此g(x)不一定具有奇偶性,故∫x
0t[f(t)+f(-t)]dt無法判斷是否為偶函式,d選項不對.故本題選:d.
若f(t)是連續函式且為奇函式,證明他的0到x的積分是偶函式。
8樓:
你就用定義證明就行,需要注意的是中間要用一步換元,就是讓t=-m,就行了。
9樓:匿名使用者
宣告:∫(a,b)f(x)dx=f(x)|(a,b)表示f(x)從a到b的定積分,f(x)為原函式之一
設f(x)=∫(0,x)f(t)dt,
f(x)-f(-x)
=∫(0,x)f(t)dt-∫(0,-x)f(t)d(t)(做替換s=-t,積分限相應地跟著變)
=∫(0,x)f(t)dt-∫(0,x)f(-s)d(-s)=∫(0,x)f(t)dt-∫(0,x)[-f(s)](-ds)=∫(0,x)f(t)dt-∫(0,x)f(s)ds=0所以f(x)=∫(0,x)f(t)dt是偶函式.
若f(x)是r上的奇函式,且f(x)在[0,+∞)上單調遞增,則下列結論:①y=|f(x)|是偶函式;②對任意的
10樓:半世迷離丶嫂
|①∵duf(x)是r上的奇函式,
∴|f(zhi-x)|dao=|-f(x)|=|f(x)|為偶數專,即函式為偶數,∴①正屬確;
②設f(x)=x,滿足條件,則f(-x)+|f(x)|=-x+|x|;
但當x<0時,f(-x)+|f(x)|=-x-x=-2x<0,
∴對任意的x∈r都有f(-x)+|f(x)|=0不成立,∴②錯誤;
③∵f(x)是r上的奇函式,且f(x)在[0,+∞)上單調遞增,
∴f(x)是r上單調遞增,
根據複合函式的單調性的性質可知y=f(-x)在(-∞,0]上單調遞減,∴③錯誤;
④∵函式f(x)是奇函式,∴y=f(x)f(-x)=-f2(x),
設t=f(x),則y=-t2,
∵f(x)在[0,+∞)上單調遞增,∴f(x)在(-∞,0]上單調遞增,
且f(x)≤f(0)=0,
函式y=-t2,在(-∞,0]上單調遞增,
根據複合函式單調性之間的性質可知y=f(x)f(-x)在(-∞,0]上單調遞增,∴④正確.
故正確的是①④,
故答案為:①④
設連續函式是奇函式,討論函式fx=∫(0-x)ftdt的奇偶性
11樓:匿名使用者
如果為奇函式
同理,如果f(x)為偶函式,則f(x)為奇函式。
已知函式f x 是定義在R上的奇函式,當x大於等於0時,f
令t小於等於0,則 t大於等於0,f t t 2 2 t t 2 2t f t 所以f t t 2 2t 即x小於等於0時f x x 2 2x 通過分析這個函式是連續遞增函式,所以只要2 a 2 a得出 2 當x小於等於0 即為 x大於等於0,因為f x 為奇函式,f 0 0,所以等在在兩端都不受什...
已知定義域為R的函式f x 為奇函式,且滿足f x 2f x ,當x時f x 2 x
樓上的都什麼啊。因為 f x 2 f x 所以 f x 4 f x 2 所以 f x f x 4 因為是奇函式,所以f x f x log 1 2 24 log 2 24,而4 log 2 24 5 所以 f log以1 2為底24的對數 f log 2 24 f log 2 24 奇函式性質 f ...
已知函式f x 是R上的奇函式,當x等於0時,f x 3 x 2,(1求y f x 的值域
尋找大森林 f x 是r上的奇函式,故f x f x 又當x 0時f x 3 x 9 x 1 1 2,所以當x 0時有 x 0,於是 f x 3 x 9 x 1 1 2 3 x 9 x 1 1 2,因此f x 3 x 9 x 1 1 2 即函式f x 的表示式為 f x 3 x 9 x 1 1 2 ...