1樓:閃亮登場
分為整數開平方和小數開平方。
1、整數開平方步驟:
(1)將被開方數從右向左每隔2位用撇號分開;
(2)從左邊第一段求得算數平方根的第一位數字;
(3)從第一段減去這個第一位數字的平方,再把被開方數的第二段寫下來,作為第一個餘數;
(4)把所得的第一位數字乘以20,去除第一個餘數,所得的商的整數部分作為試商(如果這個整數部分大於或等於10,就改用9左試商,如果第一個餘數小於第一位數字乘以20的積,則得試商0);
(5)把第一位數字的20倍加上試商的和,乘以這個試商,如果所得的積大於餘數時,就要把試商減1再試,直到積小於或等於餘數為止,這個試商就是算數平方根的第二位數字;
(6)用同樣方法繼續求算數平方根的其他各位數字。
2、小數部分開平方法:
求小數平方根,也可以用整數開平方的一般方法來計算,但是在用撇號分段的時候有所不同,分段時要從小數點向右每隔2段用撇號分開,如果小數點後的最後一段只有一位,就填上一個0補成2位,然後用整數部分開平方的步驟計算。
2樓:夜晚的藍燈
直接套用你們的公式就可以啦,最好是把提弄出來,能夠更好的解答你的問題
3樓:
根號101=10+x
(10+x)²=101
100+20x+x²=101
x²很小可忽略不計
x=1/20
根號101=10.05+y以此類推
三次的和這個類似
怎樣快速計算出一個數的平方根立方根?
4樓:關鍵他是我孫子
快速計算平方根的公式:20m+n;
譬如求72162的平方根:
要從個位開始將它分塊,
每兩位一塊,即7,21,62這樣分。
1、首先開始試商,從最高為試起,先來7,思考什麼數的平方小於7,明顯是2。然後用7減去2的平方,得出的數字3為餘數,將要在下一步與後兩位數字合起來用來進行下一步運算。
2、第二步,此時被除的變成了321,此時公式開始派上用場,上一步試出來的商2即為m,至於n是第二步要試的商,而除數就是公式20m+n,切記商與除數的積不要大過被除數。
具體到剛才的數字,除數是321,而被除數則是20×2+n,即40幾,要n×(20×2+n)小於等於321,最合適的就是n=6,即46×6=276,再用321減去276得出結果45用於第三步的試商。
3、第三步,也像第二步一樣試商,只不過此時的被除數變成4562,除數m=20×26+n,n是第三步要試的商。由n×(20×26+n)小於等於4562得出第三步的試商n=8。
4、第四步開始棘手了,因為個位之前的已經試完了,此時,應從小數點之後的十分位開始,如一開始一樣,每兩位分成一塊,這之後,就可以按前面的方法一直試下去了。
5樓:匿名使用者
在這裡,我“定義”a^b=a的b次方。
(10a+b)^2 = 100a^2+20ab+b^2 = 100a^2+b(20a+b)
a代表的是已經計算出來的結果,b代表的是當前需要計算的位上的數。在每次計算過程中,100a^2都被減掉,剩下b(20a+b)。然後需要做的就是找到最大的整數b'使b'(20a+b')<=b(20a+b)。
因此,我就照著書裡的方法,推導開立方筆演算法。
(10a+b)^3 = 1000a^3+300a^2*b+30a*b^2+b^3 = 1000a^3+b[300a^2+b(30a+b)]
如果每次計算後都能減掉1000a^3的話,那麼剩下的任務就是找到最大的整數b',使b'[300a^2+b'(30a+b')]<=b[300a^2+b(30a+b)]。
於是,我就設計了一個版式。下面就開始使用這個版式來檢驗開立方筆演算法。
例如:147^3=3176523
一開始,如下圖所示,將3176523從個位開始3位3位分開。(3'176'523)
第一步,我們知道,1^3 < 3 < 2^3,所以,第一位應該填1。
1^3 = 1,3 - 1 = 2,餘2,再拖三位,一共是2176。
接下來這一步就比較複雜了。因為我水平有限,我現在還不能把它改造得比較好。
依照“b[300a^2+b(30a+b)]”,所以:
1^2*300=300,1*30=30,如圖上所寫。
第二位就填4,所以上圖3個空位都填4。
然後(34*4+300)*4=1744,2176-1744=432,再拖三位得432523。
然後就照上面一樣,
14^2*300=58800,14*30=420,如上圖所寫。
第三位就填7,所以上圖下邊3個空位都填7。
然後(427*7+58800)*7=432523,432523-432523=0,到此開立方結束。
在我以後的一些實踐中,發現越往後開,300*a^2與b(30a+b)的差距就越大,尋找b的工作就越容易,因為結果中有一項是300*a^2*b。
徒手開n次方根的方法:
原理:設被開方數為x,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,
則有:(10*a+b)^n-(10*a)^n<=c(前一步的差與本段合成);且b取最大值
用純文字描述比較困難,下面用例項說明:
我們求 2301781.9823406 的5次方根:
第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用'表示);不足部分在兩端用0補齊;
23'01781.98234'06000'00000'00000'..........
從高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,條件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且為最大值;顯然b=1
差c=23-b^5=22,與下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,
b取最大值8,差c=412213,與下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,
b取最大值7
說明:這裡可使用近似公式估算b的值:
當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;與下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(1870+b)^5-1870^5<=150880852706000,
b取最大值2,差c=28335908584368;與下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一個b,
條件:(10*a+b)^n-(10*a)^n<=c,即:
(18720+b)^5-18720^5<=2833590858436800000,
b取最大值4,差c=376399557145381376;與下一段合成,
c=c*10^5+下一段=37639955714538137600000
.............................
最後結果為:18.724......
以上是轉貼一**的內容,我自己前半部分有些明白,後半部分還不明白,但我可以確定以上的解答過程才是正確的,而絕不是一個數的3倍.
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11'56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
6樓:欒朝雨冷杏
算出一個數的平方根,就用這個數除以4,9,25等一些平方數,看出這個數由那些平方數乘積
立方根,就除以8,27等等
7樓:匿名使用者
★ヤ礷銫~淚ヤ◆
為你解答、
歡迎採納、http://zhidao.baidu.com/question/50771684.html 這個也許會給你些幫助
8樓:匿名使用者
只能用窮舉法了比如55的平方根,你必須先想一個平方以後接近55而小於55的數,比如七七四十九,然後再不斷新增小數部分咯
9樓:匿名使用者
記住素數的立方根平方根 用的時候 相乘
什麼是平方根和立方根,平方根和立方根的區別是什麼
蹉蘊和鄞林 平方根,又叫二次方根,對於非負實數來說,是指等於某個自乘結果的實數,表示為 其中屬於非負實數的平方根稱算術平方根。乙個正數有兩個平方根 0只有乙個平方根,就是0本身 負數有兩個共軛的純虛平方根。如果乙個數x的立方等於a,即x的三次方等於a x 3 a 即3個x連續相乘等於a,那麼這個數x...
求平方根立方根試題,求平方根與立方根的題目
2 如果x的一個平方根是7.12,那麼另一個平方根是 4 一個正數的兩個平方根的和是 一個正數的兩個平方根的商是 若 a b 1 與根號 a 2b 4 互為相反數,則 a b 的立方根是 1 5的絕對值是 的相反數是 的倒數是 2 用 號按由大到小的順序連線下列各數 5,2,3.6,6,1,0,3 ...
關於平方根和立方根的計算,關於平方根和立方根的計算題
涙 殤玥 解 x 2的平方根是 2,x 2 2 x 2 4 x 6又 2x y 7的立方根是3 2x y 7 3 2x y 7 27 2 6 y 20 y 8 當x 6,y 8時 x y 6 8 100 所以x y 的平方根 10望採納 x 2的平方根是正負2 所以x 2 2 2 4 x 62x y...