高中向量問題

時間 2021-08-30 10:45:09

1樓:匿名使用者

[編輯本段]向量的表示  1、代數表示:一般印刷用黑體小寫字母α、β、γ … 或a、b、c … 等來表示,手寫用在a、b、c…等字母上加一箭頭表示。

2、幾何表示:向量可以用有向線段來表示。有向線段的長度表示向量的大小,箭頭所指的方向表示向量的方向。

(若規定線段ab的端點a為起點,b為終點,則線段就具有了從起點a到終點b的方向和長度。這種具有方向和長度的線段叫做有向線段。)

3、座標表示:在平面直角座標系中,分別取與x軸、y軸方向相同的兩個單位向量i,j作為基底。a為平面直角座標系內的任意向量,以座標原點o為起點作向量op=a。

由平面向量基本定理知,有且只有一對實數(x,y),使得 a=向量op=xi+yj,因此把實數對(x,y)叫做向量a的座標,記作a=(x,y)。這就是向量a的座標表示。其中(x,y)就是點p的座標。

向量op稱為點p的位置向量。 [編輯本段]向量的模和向量的數量  向量的大小,也就是向量的長度(或稱模)。向量a的模記作|a|。

注:1、向量的模是非負實數,是可以比較大小的。

2、因為方向不能比較大小,所以向量也就不能比較大小。對於向量來說“大於”和“小於”的概念是沒有意義的。例如,“向量ab>向量cd”是沒有意義的。 [編輯本段]特殊的向量   單位向量

長度為單位1的向量,叫做單位向量.與向量a同向且長度為單位1的向量,叫做a方向上的單位向量,記作a0,a0=a/|a|。

零向量長度為0的向量叫做零向量,記作0.零向量的始點和終點重合,所以零向量沒有確定的方向,或說零向量的方向是任意的。

相等向量

長度相等且方向相同的向量叫做相等向量.向量a與b相等,記作a=b.

規定:所有的零向量都相等.

當用有向線段表示向量時,起點可以任意選取。任意兩個相等的非零向量,都可用同一條有向線段來表示,並且與有向線段的起點無關.同向且等長的有向線段都表示同一向量。

自由向量

始點不固定的向量,它可以任意的平行移動,而且移動後的向量仍然代表原來的向量。

在自由向量的意義下,相等的向量都看作是同一個向量。

數學中只研究自由向量。

滑動向量

沿著直線作用的向量稱為滑動向量。

固定向量

作用於一點的向量稱為固定向量(亦稱膠著向量)。

位置向量

對於座標平面內的任意一點p,我們把向量op叫做點p的位置向量,記作:向量p。 [編輯本段]相反向量  與a長度相等、方向相反的向量叫做a的相反向量,記作-a。有 -(-a)=a;

零向量的相反向量仍是零向量。

平行向量

方向相同或相反的非零向量叫做平行(或共線)向量.向量a、b平行(共線),記作a∥b.

零向量長度為零,是起點與終點重合的向量,其方向不確定,我們規定:零向量與任一向量平行.

平行於同一直線的一組向量是共線向量。

共面向量

平行於同一平面的三個(或多於三個)向量叫做共面向量。

空間中的向量有且只有一下兩種位置關係:⑴共面;⑵不共面。

只有三個或三個以上向量才談共面不共面。 [編輯本段]向量的運算  設a=(x,y),b=(x',y')。

1、向量的加法

向量的加法滿足平行四邊形法則和三角形法則。

ab+bc=ac。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的運算律:

交換律:a+b=b+a;

結合律:(a+b)+c=a+(b+c)。

2、向量的減法

如果a、b是互為相反的向量,那麼a=-b,b=-a,a+b=0. 0的反向量為0

ab-ac=cb. 即“共同起點,指向被減”

a=(x,y) b=(x',y') 則 a-b=(x-x',y-y').

3、數乘向量

實數λ和向量a的乘積是一個向量,記作λa,且∣λa∣=∣λ∣·∣a∣。

當λ>0時,λa與a同方向;

當λ<0時,λa與a反方向;

當λ=0時,λa=0,方向任意。

當a=0時,對於任意實數λ,都有λa=0。

注:按定義知,如果λa=0,那麼λ=0或a=0。

實數λ叫做向量a的係數,乘數向量λa的幾何意義就是將表示向量a的有向線段伸長或壓縮。

當∣λ∣>1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上伸長為原來的∣λ∣倍;

當∣λ∣<1時,表示向量a的有向線段在原方向(λ>0)或反方向(λ<0)上縮短為原來的∣λ∣倍。

數與向量的乘法滿足下面的運算律

結合律:(λa)·b=λ(a·b)=(a·λb)。

向量對於數的分配律(第一分配律):(λ+μ)a=λa+μa.

數對於向量的分配律(第二分配律):λ(a+b)=λa+λb.

數乘向量的消去律:① 如果實數λ≠0且λa=λb,那麼a=b。② 如果a≠0且λa=μa,那麼λ=μ。

4、向量的數量積

定義:已知兩個非零向量a,b。作oa=a,ob=b,則角aob稱作向量a和向量b的夾角,記作〈a,b〉並規定0≤〈a,b〉≤π

定義:兩個向量的數量積(內積、點積)是一個數量,記作a·b。若a、b不共線,則a·b=|a|·|b|·cos〈a,b〉;若a、b共線,則a·b=+-∣a∣∣b∣。

向量的數量積的座標表示:a·b=x·x'+y·y'。

向量的數量積的運算律

a·b=b·a(交換律);

(λa)·b=λ(a·b)(關於數乘法的結合律);

(a+b)·c=a·c+b·c(分配律);

向量的數量積的性質

a·a=|a|的平方。

a⊥b 〈=〉a·b=0。

|a·b|≤|a|·|b|。

向量的數量積與實數運算的主要不同點

1、向量的數量積不滿足結合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。

2、向量的數量積不滿足消去律,即:由 a·b=a·c (a≠0),推不出 b=c。

3、|a·b|≠|a|·|b|

4、由 |a|=|b| ,推不出 a=b或a=-b。

5、向量的向量積

定義:兩個向量a和b的向量積(外積、叉積)是一個向量,記作a×b。若a、b不共線,則a×b的模是:

∣a×b∣=|a|·|b|·sin〈a,b〉;a×b的方向是:垂直於a和b,且a、b和a×b按這個次序構成右手系。若a、b共線,則a×b=0。

向量的向量積性質:

∣a×b∣是以a和b為邊的平行四邊形面積。

a×a=0。

a∥b〈=〉a×b=0。

向量的向量積運算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量沒有除法,“向量ab/向量cd”是沒有意義的。

6、三向量的混合積

定義:給定空間三向量a、b、c,向量a、b的向量積a×b,再和向量c作數量積(a×b)·c,所得的數叫做三向量a、b、c的混合積,記作(a,b,c)或(abc),即(abc)=(a,b,c)=(a×b)·c

混合積具有下列性質:

1、三個不共面向量a、b、c的混合積的絕對值等於以a、b、c為稜的平行六面體的體積v,並且當a、b、c構成右手系時混合積是正數;當a、b、c構成左手系時,混合積是負數,即(abc)=εv(當a、b、c構成右手系時ε=1;當a、b、c構成左手系時ε=-1)

2、上性質的推論:三向量a、b、c共面的充要條件是(abc)=0

3、(abc)=(bca)=(cab)=-(bac)=-(cba)=-(acb)

4、(a×b)·c=a·(b×c)

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

① 當且僅當a、b反向時,左邊取等號;

② 當且僅當a、b同向時,右邊取等號。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

① 當且僅當a、b同向時,左邊取等號;

② 當且僅當a、b反向時,右邊取等號。

定比分點

定比分點公式(向量p1p=λ·向量pp2)

設p1、p2是直線上的兩點,p是l上不同於p1、p2的任意一點。則存在一個實數 λ,使 向量p1p=λ·向量pp2,λ叫做點p分有向線段p1p2所成的比。

若p1(x1,y1),p2(x2,y2),p(x,y),則有

op=(op1+λop2)(1+λ);(定比分點向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分點座標公式)

我們把上面的式子叫做有向線段p1p2的定比分點公式

三點共線定理

若oc=λoa +μob ,且λ+μ=1 ,則a、b、c三點共線

三角形重心判斷式

在△abc中,若ga +gb +gc=o,則g為△abc的重心 [編輯本段]向量共線的重要條件  若b≠0,則a//b的重要條件是存在唯一實數λ,使a=λb。

a//b的重要條件是 xy'-x'y=0。

零向量0平行於任何向量。 [編輯本段]向量垂直的充要條件  a⊥b的充要條件是 a·b=0。

a⊥b的充要條件是 xx'+yy'=0。

零向量0垂直於任何向量.

2樓:葉軒滕谷雪

(-π/6,0)的座標位置在x軸左半軸(負半軸),所以按照(-π/6,0)平移是向左平移,謝謝

高中數學向量問題

如果說向量m垂直向量a和向量b,向量m就垂直a b所在的平面是錯的因為如果a b平行的話 m未必要垂直a b所在的平面 所以要分開討論結論 向量m垂直向量n 解 若向量a與向量b不平行 則因為向量m垂直向量a和向量b 所以向量m垂直a與b所在的平面 n a b 所以向量n在該平面上所以向量m垂直於向...

高中數學向量題,高中數學向量

在數學與物理中,既有大小又有方向的量叫做向量 亦稱向量 在數學中與之相對應的是數量,在物理中與之相對應的是標量。高中數學向量 lz您好。對於銳角三角形,三個角都是銳角 直角三角形則是乙個直角二個銳角 鈍角三角形則是乙個鈍角二個銳角。這就意味著,我們判斷三角形,必須判斷最大的角是誰!如若不然,你將找到...

怎麼學好高中數學向量的有關問題,高中數學有什麼關於學習向量的好方法

把相關公式單獨寫出來,要寫出這些公式是用來計算什麼的,就那麼一些,先記下來,第二天再複習,第三天再複習 然後看題目,只看最後是讓計算什麼的,就對對應相關公式,然後要向別人請教計算步驟。我高中數學在學校排第一很多年了,你數學不好,就這樣可以快人快些幫到你,做題目多了不明白的再看細節知識,只能這樣了。要...