已知函式f x 1 2 2 x 2 x ,求f x 的定義域,值域,並確定函式的奇偶性,單調性

時間 2021-09-04 13:58:41

1樓:文明使者

定義域為r

∵2^x>0

∴2^x+2^(-x)≥2

當2^x=1時即x=0時取得最小值2

∴f(x)的值域為[1,+∞)

∵f(-x)=0.5[2^(-x)+2^(x)]=f(x)∴f(x)是偶函式

f(-x)=0.5[2^(-x)+2^x]=f(x)令t=2^x>0,f(t)=0.5(t+1/t)求導:f'(t)=0.5(1-1/t²)

解f'(t)=0得:t=1(t=-1<0與t>0矛盾捨棄)所以:t=2^x=1,x=0

當t<1即x<0時,f'(t)<0恆成立

∴單調遞增區間為(0,+∞)

當t>1即x>0時,f'(t)>0恆成立

∴單調遞減區間為(-∞,0)

2樓:匿名使用者

答:f(x)=(1/2)[2^x+2^(-x)]=(1/2)*(2^x+1/2^x)

>=(1/2)*2*√[(2^x)*1/2^x]=1f(-x)=(1/2)[2^(-x)+2^x]=f(x)令m=2^x>0,f(m)=(1/2)(m+1/m)求導:f'(m)=(1/2)(1-1/m²)解f'(m)=0得:m=1(m=-1<0與m>0矛盾捨棄)所以:

m=2^x=1,x=0

當m<1即x<0時,f'(m)<0,f(m)是減函式;

當m>1即x>0時,f'(m)>0,f(m)是增函式。

所以:定義域為實數範圍r

值域為[1,+∞)

f(x)是偶函式。

x<0時,f(x)單調遞減;x>0時,f(x)單調遞增。

3樓:year王楊靖

解:因為f(-x)=1/2[2^(-x)+2^x]=f(x),所以f(x)為偶函式,定義域為r,因為2^x+2^(-x)大於等於2×√[2^x+2^(-x)]=2,所以當2^x+2^(-x)=2時,y最小,最小值為y=1,所以值域為[1,正無窮大]

已知函式f(x)2x ,已知函式f(x) 2x 1 x 1

1 已知函式f x 2x 1 x 1 2 1 x 1 在區間 1,正無限大 內 f x 1 x 1 0 所以函式單調遞增 2 由於單調遞增 所以f x 最大 f 4 2 1 4 1 2 1 5 9 5 f x 最小 f 1 2 1 1 1 2 1 2 3 2希望能幫到你o o f x 2x 1 x ...

已知函式f(x),已知函式f(x 1) x的平方 求f(x)

這種問題我建議你最好用五點作圖法畫個圖。當然,圖怎麼畫,怎麼畫的又快又好,有講究。f x sin 2x 6 1 為了畫圖簡便,只需畫y sin 2x 6 的影象,後面的 1在最後處理。列表計算 2x 6.0.2.3 2.2 x.12.2 12.5 12.8 12.11 12 分母都用公分母12,好畫...

已知函式f x 2 x 1x 2 ,解不等式f x 2 x 1x 2 大於或等於2,兩個 是絕對值的意思

對x的值進行分類討論 本題的關鍵在於去掉絕對值符號!x 1時,2 x 1 x 2 2解得x 6,1 2解得x 2 3,所以2 3 x 2x 2時,2 x 1 x 2 2解得x 2,所以x 2 綜上所述,x 6,2 3 x.考慮到要去絕對值,因此得將它按照節點分段,先把分段確定後,再分析去除絕對值,最...