1樓:匿名使用者
y= (sinx)^n . cos(nx)
y' = cos(nx) . [ n (sinx)^(n-1) ] . cosx + (sinx)^n . (-sin(nx)) .( n)
=n(sinx)^(n-1).cosx. cos(nx) - nsin(nx). (sinx)^n
求導數,這個怎麼做?
2樓:老黃的分享空間
第一個可以做一個化簡,變成y=cos^2(x/2)/sin^2(x/2)=cot^2(x/2),
則y'=-xcot(x/2)csc^2(x/2). 答案可能有所不同,是因為可以化成不同形式。
第二個y=2xln(tanx+1)+x^2·(secx)^2/(tanx+1).
3樓:丶木落丶
=1+(2cosx/1-
cosx)
=[-2sinx(1-cosx)-2sinxcosx]/(1-cosx)²
=-sinx/(1-cos²x+2cosx)=-sinx/(sin²x+2cosx)
求導數,第1,2題這種該怎麼做?
4樓:老黃知識共享
1,分母乘3就是導數的相反數,所以答案是c.
(x-3h)-x=-3h.
2,把分母的2按1/2提到極限符號前面就是導數,所以答案是b.
1-(1-x)=x
5樓:s流氓兔
運用洛必達法則,第一題h是趨於0,就把x當作已知量來算,求導,選c
第2題和第一題一樣,運用洛必達法則,選b
這個是求導數的題,請問怎麼做呀,想要詳細點的步驟,謝謝大佬(◦˙▽˙◦)?
6樓:神龍00擺尾
利用求導基本公式和原則進行求解,詳細過程請見**
求偏導數怎樣做啊
7樓:姬覓晴
當函式 z=f(x,y) 在 (x0,y0)的兩個偏導數 f'x(x0,y0) 與 f'y(x0,y0)都存在時,稱 f(x,y) 在 (x0,y0)處可導。如果函式 f(x,y) 在域 d 的每一點均可導,那麼稱函式 f(x,y) 在域 d 可導。
此時,對應於域 d 的每一點 (x,y) ,必有一個對 x (對 y )的偏導數,因而在域 d 確定了一個新的二元函式,稱為 f(x,y) 對 x (對 y )的偏導函式。簡稱偏導數。
按偏導數的定義,將多元函式關於一個自變數求偏導數時,就將其餘的自變數看成常數,此時他的求導方法與一元函式導數的求法是一樣的。
8樓:愛笑的
就兩節課蘿莉控潑墨魔宮哦
9樓:
單純的一階偏導,求x的偏導得時候把y看成一個常數,求y偏導得時候把x看成一個常數
用導數證明單調性和求單調區間怎麼做?給個例題
10樓:匿名使用者
(1)若導數大於零,則單調遞增,若導數小於零,則單調遞減。導數等於零為函式駐點,不一定為極值點,需代入駐點左右兩邊的數值求導數正負判斷單調性。
(2)若已知函式為遞增函式,則導數大於等於零,若已知函式為遞減函式,則導數小於等於零。
導數證明單調性的例子:
求證y=x,是一個增函式。
證明過程如下:
y=x的導數y'=1。1恆大於0,所以y=x在定義域上遞增。
導數求單調區間的例子:
求y=x²的單調區間,y'=2x,當x大於等於0時,y'大於0,是一個增函式。當x小於等於0時,y'小於0,是一個減函式。
故:增區間為0到正無窮。減區間為負無窮到0。
擴充套件資料
一般是用導數法求函式單調性。
對f(x)求導,f’(x)=3x²-3=3(x+1)(x-1)
令f’(x)>0,可得到單調遞增區間(-∞,-1)∪(1,+∞),同理單調遞減區間[-1,1]
複合函式還可以用規律法,對於f(g(x)),如果f(x),g(x)都單調遞增(減),則複合函式單調遞增;否則,單調遞減。口訣:同增異減。
還可以使用定義法,就是求差值的方法。
11樓:汶汶之水
先求函式的導數,再求導數為零的點,這些為零的點之間區間就是函式的單調區間,然後在這些區間驗證函式導數的值是否大於零,若函式導數大於零,則該函式在該區間為增函式,反之為減函式。
例:y=3x^3+2x^2-5x+3,
y'=9x^2+4x-5;
令y'=0,則(9x-5)(x+1)=0;得x1=5/9,x2=-1;
則該函式得單調區間為(- ∞,-1], [-1,5/9], [5/9,+∞);
y'在[- ,-1) (9x-5)<0,(x+1)<0,所以y’>0,則函式在該區間為增函式;
在(-1,5/9)內9x-5<0, x+1>0,則y'<0,所以該函式在該區間為減函式;
在(5/9, + )9x-5>0 ,x+1>0,則y'>0,所以該函式在該區間為增函式。
12樓:高中數學微課
導數的應用同步課堂:1.3.2導數求單調區間(2)
13樓:匿名使用者
先求定義域 再求導
證明單調性方法:證明導大於零則單調遞增,反之遞減
求單調區間方法:導大於等於零,列不等式,解x範圍 寫成區間為單調增區間,反之為減區間
14樓:頁半亭吧
先求出導數,求出它等於0的解,然後在區間內任取一值代入導數方程,大於0的就是單調遞增,小於0的就是單調遞減
…這種利用導數定義求函式的導數的題怎麼做…
15樓:雪學血月
這個太簡單了,首先你弄明白導數的定義,然後一套用公式就可以了
求函式的導數怎麼做,看了16個公式還是不懂
16樓:匿名使用者
當然有具體公式
1.y=c(c為常數) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.
y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1+x^212.y=arccotx y'=-1/1+x^2這些是用多了背下來了才能一眼看出來
求導數怎麼做,求導數?如何做
y sinx n cos nx y cos nx n sinx n 1 cosx sinx n sin nx n n sinx n 1 cosx.cos nx nsin nx sinx n 求導數?如何做 這道題就是去絕對值,導數等於1,然後用導數第二定義求極限就可以了,具體可以看圖。 這可以運用函...
求導數我算的對嗎,還是答案錯了,求導數這題做得對嗎
老黃知識共享 我認真的看了一遍,恭喜你,兄弟,是答案錯了。你是對的,bingo!慶祝一下!打彩蛋,湊字數!求導數這題做得對嗎? 是答案沒有錯,表示形式不同,這裡由換底公式可得 log 5 e lne ln5 1 ln5.應該是 1 2xln5 更簡略點。 孤狼嘯月 這道題你和答案都沒有錯,這是一個答...
e y的導數是多少,e xy?怎麼求導?求y的導數?
西域牛仔王 如果是對 y 求導,得 e y 如果是對其它字母求導,得 0 如果 y 是 x 的函式,而對 x 求導,得 e y y e xy?怎麼求導?求y的導數? e xy e x y e x y ln e x e xy x xe xy 設z e xy 則 z y e xy x xe xy e y...